
A 3D Tele-Immersion System Based on Live Captured
Mesh Geometry

1Rufael Mekuria, 2Michele Sanna, 2Stefano Asioli, 2Ebroul Izquierdo, 1Dick C.A. Bulterman and
1Pablo Cesar

1
Centrum voor Wiskunde en Informatica

Science Park 123

1098 XG Amsterdam

2
Queen Mary, University of London

Mile End Road, E1

4NS London UK

r.n.mekuria@cwi.nl, michele.sanna@eecs.qmul.ac.uk, stefano.asioli@eecs.qmul.ac.uk,
ebroul.izquierdo@eecs.qmul.ac.uk, dick.bulterman@cwi.nl, p.s.cesar@cwi.nl

ABSTRACT

3D Tele-immersion enables participants in remote locations to

share, in real-time, an activity. It offers users natural interactivity

and immersive experiences, but it challenges current networking

solutions. Work in the past has mainly focused on the efficient

delivery of image-based 3D videos and on the realistic rendering

and reconstruction of geometry-based 3D objects. The

contribution of this paper is a complete media pipeline that allows

for geometry-based 3D tele-immersion. Unlike previous

approaches, that stream videos or video plus depth estimate, our

streaming module can transmit the live-reconstructed 3D

representations (triangle meshes). Based on a set of comparative

experiments, this paper details the architecture and describes a

novel component that can efficiently stream geometry in real-

time. This component includes both a novel fast local

compression algorithm and a rateless packet protection scheme

geared towards the requirements imposed by real-time

transmission of live-capture mesh geometry. Tests on a large

dataset show an encoding and decoding speed-up of over 10 times

at similar compression and quality rates, when compared to the

high-end MPEG-4 SC3DMC mesh encoder. The implemented

rateless code ensures complete packet loss protection of the

triangle mesh object and avoids delay introduced by

retransmissions. This approach is compared to a streaming

mechanism over TCP and outperforms it at packet loss rates over

2% and/or latencies over 9 ms in terms of end-to-end transmission

delay. As reported in this paper, the component has been

successfully integrated into a larger tele-immersive environment

that includes beyond state of the art 3D reconstruction and

rendering modules. This resulted in a prototype that can capture,

compress transmit and render triangle mesh geometry in real-time

over the internet.

Categories and Subject Descriptors

H.4.3 [Information Systems Applications]: Communications

Applications – Computer conferencing, teleconferencing, and

videoconferencing

General Terms

Algorithms, Measurement, Experimentation

Keywords

Graphics Streaming, LT Codes, 3D Meshes, 3D Tele-Immersion,

Architecture, Compression Algorithms, Networking,

1. INTRODUCTION
3D Tele-immersion provides a common virtual space, where

distributed participants can naturally interact. Advances on 3D

reconstruction and rendering – and the success of the Microsoft’s

Kinect – enable, in real-time, the creation of highly realistic

representations of the participants as triangle mesh models (see

Figure 1). Efficient real-time transmission of these representations

opens up new possibilities for 3D tele-immersion and mixing real

and virtual environments. Unfortunately, existing video codecs

and packetisation schemes do not support such representations

(neither do geometry streaming mechanisms intended for

downloading and interacting with remotely stored geometry-based

objects). This paper takes the first step towards this direction, by

reporting on our efforts in developing a complete media pipeline

that is capable, in real-time, of efficiently transmitting live-

captured mesh objects between remote locations. Results show

that our solution outperforms existing mechanisms, when

transmitting high quality 3D geometry representations.

3D tele-immersion has been studied in the past for a variety of

application areas such as creative dancing, cyber-archeology,

medicine, and gaming [1][2][3][4]. While high-resolution video

conferencing systems may facilitate basic interaction between

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

MMSys’13, February 26-March 1, 2013, Oslo, Norway

Copyright 2013 ACM 978-1-4503-1894-5/13/02...$15.00

Figure 1 Our media pipeline enables the transmission, in real-

time, of live-reconstructed meshes for 3D tele-immersion.

mailto:r.n.mekuria@cwi.nl
mailto:michele.sanna@eecs.qmul.ac.uk
mailto:stefano.asioli@eecs.qmul.ac.uk
mailto:dick.bulterman@cwi.nl
mailto:p.s.cesar@cwi.nl

distributed sites, they generally fail in providing users a natural

way for eye contact (gaze), when more than two sites are

involved, and they do not truly immerse users in the same virtual

environment. Over the years, some attempts have been made to

address these issues by using larger displays, multiple cameras,

gaze correction mechanisms, and expensive fully furnished

environments. [5]. Instead, a system like ours, that allows the

transmission of live-captured 3D representations (such as a

triangle mesh) of the participants and their body and facial

expressions, will allow realistic immersion and interaction.

Capturing highly realistic representations of people in real-time

was generally only possible at professional media studios using

arrays of expensive stereo cameras and hardware for real-time

depth estimation based on stereo correspondence. The recent

commercial success of Microsoft’s Kinect, which provides

reasonable depth estimates, has brought inexpensive range

cameras to the market (for less than $200). By deploying multiple

Kinects from different angles, reasonable 360-degree geometric

representations of people can be reconstructed (see Figure 1).

Moreover, the wide availability of general-purpose GPU and

parallel computing, allows a speed optimization of the 3D

reconstruction process to real-time [6][7]. Finally, modern

graphics cards and displays allow multi-view and auto-

stereoscopic rendering of such 3D reconstructions.

Looking ahead in the future, when current challenges regarding

calibration and synchronization of the different Kinects are

solved, we believe that 3D tele-immersion will become integrated

into social network experiences (similar to current Google’s

Hangout video conferencing). Still, in order to enable real-time

transmission of such geometric representations over the Internet,

efficient compression and streaming mechanisms that can operate

in a realistic environment will be needed. For regular video, such

mechanisms that can operate in real-time are already available:

H.263+ and H.264 compression and network streaming profiles

based on RTP/RTSP. However, if the captured human

representation for 3D tele-immersion is geometry-based (e.g.,

triangle mesh), existing codecs and packetisation schemes cannot

be used, as they do not support this format. There is a need for a

compression and streaming scheme geared towards live-captured

geometries, which is the main contribution of this paper.

Over the years, various schemes for geometry-based compression

have been developed, mostly aimed at efficient rendering.

Transmission schemes and middleware solutions for real-time

streaming over lossy networks have been developed as well,

generally dealing with remote downloading of stored objects [17

18 19]. None of these approaches handle the critical real-time

requirement as imposed by live-captured triangle mesh for 3D

Tele-immersion. This paper introduces the particular requirements

of this new generation of 3D tele-immersion systems, it describes

a working prototype of the transmission engine and its

architecture, and it reports on a set of experiments, both with the

integrated prototype and with offline collected data captured with

five Kinects.

This paper is structured as follows. Section 3 overviews the

related work regarding existing 3D tele-immersion systems, mesh

geometry compression algorithms, and mesh geometry

transmission solutions. Next, section 4 introduces the streaming

pipeline of our 3D tele-immersion system. Section 5 presents a

specific compression method we have designed for captured

meshes, comparing it with some existing mesh compression

schemes. Section 6 describes the proposed transmission scheme

based on a rateless code, reporting results that highlight the

benefits of this approach over TCP transmission. Section 7

presents our 3D Tele-immersion system, highlighting the

performance of the overall system. We discuss the implications

of our work in section 8. The paper concludes with section 9. The

next section motivates our work and discusses our contributions.

2. MOTIVATION AND RESEARCH

QUESTION
Real-time streaming of live-captured video is common in video

conferencing systems, but streaming of captured triangle

geometry objects has rarely been considered in the past. There are

various reasons why we consider efficient real-time transmission

of live-captured triangle geometry essential for the next-

generation of 3D tele-immersion systems. First, modern graphics

cards can take advantage of advanced rendering methods, such as

multiple views for stereo and multi-stereoscopic or free-viewpoint

rendering. Second, it allows for easy integration with virtual

worlds, where triangle mesh representations are common. Finally,

novel application areas can emerge such as natural interactions

between people in real and virtual worlds. Geometry Streaming

solutions can be also beneficial for applications like camera or

terrain surveillance, where geometric data is live-captured and

needs to be available in real-time to observers or automatic

engines. In this paper we are concerned with the 3D tele-

immersion application for interactive purpose.

In particular, this paper aims to answer the following research

question:

What is an efficient way to transmit real-time live-captured

triangle mesh geometry in real-time in the internet, as needed for

3D Tele-immersion?

Our main contribution is the design and development of a

streaming module that takes into account the specific

requirements for streaming captured meshes. The requirements

are the following:

Support a full 3D triangle mesh representation: the engine should

support streaming of the common 3D triangle mesh

representation. That is, a list of points with properties (coordinate,

normal, colour) and a list of faces indexing these points, resulting

into a surface in the 3D space.

Low end-to-end Latency is generally considered the most

important factor in 3D Tele-immersion, as the pipeline consists of

bandwidth and computation savvy operations. For this paper we

aim to provide an end-to-end transmission latency below 300 ms,

based on video conferencing requirements.

Flexible I/O representation: the data should efficiently flow from

the capturing and reconstruction blocks, via the streaming engine,

to the renderers without blocking. To allow for minimum pipeline

delay and possible synchronization between different streams a

flexible I/O scheme is needed

Adaptability: the mechanism should be able to adapt to changing

network conditions such as bandwidth, possibly reducing the

quality of the captured stream. Some rate/complexity control is

desired.

Robustness to packet loss as it occurs in congested networks is

desired. Some quality degradation may happen, but it should be

possible to reconstruct the triangle mesh at the receiver in case of

packet loss.

Bandwidth: the triangle mesh stream should not consume too

much bandwidth; some form of compression is desired.

No a priori information of the geometric properties of the objects

can be assumed. The application should be able to stream any

triangle mesh that is currently captured. Similar to video

conferencing, any object that is captured should be streamed. This

means that no pre-stored avatars or models can be transmitted as

placeholders.

Real time Live-captured triangle meshes should be supported.

Contrary to live captured video, where frames generally consist of

a fixed number of points (320x240, 640x480), captured triangle

mesh frames can have different numbers of points i.e. no such

point (pixel) correspondence between frames can be made. This

means that the triangle meshes have to be transmitted as a

sequence of static meshes. To our knowledge, a mechanism to

estimate this correspondence between captured points in real time

does not exist.

Contribution: this paper presents a component that can

efficiently stream in real-time triangle mesh geometry, that is live

captured and reconstructed. The component has two main

subcomponents: encoding and transmission. First, we introduce an

encoding mechanism that reduces the size of the reconstructed

mesh to values similar to those obtained with a state of the art

TFAN MPEG encoder, but over 10 times faster. This meets our

requirements on latency and bandwidth. Second, we provide a

transmission scheme that uses a rateless code, meeting the

requirements of robustness, latency and adaptability to changing

network conditions.

3. RELATED WORK

3.1 3D Tele-immersion
A 3D tele-immersion application presents great challenges to

capturing, streaming/networking and rendering technologies. The

first 3D tele-immersive research dates back to the beginning of

this millennium. The National Tele-Immersive initiative NTII, a

consortium of American Universities and industries, demonstrated

a first 3D immersive system that captured 3D point cloud

representations and stereo video, and rendered using stereoscopic

displays [9]. This system allowed immersive interaction between

sites but it was not optimized for efficient transmission, as the

focus was on rendering and reconstruction. The system used the

Internet2 and TCP/IP to send the point cloud representations and

the stereo video uncompressed. In this system, video streams were

sent from different machines to a cluster. As these different

TCP/IP streams often utilize a common link, the TCP bandwidth

congestion mechanism made such streams to compete, degrading

the overall quality. Ott and Patel [10] developed a coordination

protocol that allowed, in the gateway, coordination between the

streams to alleviate this problem. At the University of Illinois,

Yang et al. looked at the case of streaming multiple live-captured

3D videos in an overlay with 4-9 sites on the Internet2, leading to

a large amount video traffic [11]. By adapting the forwarding

mechanisms, in the overlay network, to the view of the specific

recipient user, they achieved bandwidth gains by timely dropping

irrelevant streams. Huang et al. looked at a similar problem, also

taking into account the synchronization/skew level between the

streams. They developed a scheme, called sync-cast [12], that

allowed video streams, in an overlay with multiple immersive

sites, to be forwarded based on bandwidth, synchronization and

latency requirements. Vasuvedan et al. proposed a 3D tele-

immersion system for capturing and rendering. This system can in

real-time reconstruct humans in the scene with high level of detail

[7]. They used 12 clusters of 4 DragonFly cameras that reproduce

3D colour plus depth images of a human. On this depth image,

triangular meshing is applied. The main advantages of this

technique are that by interpolating points a more efficient

representation of the depth image is possible, and that by

changing the size of the triangles it is possible to adapt the level of

detail. Wu et al. developed a streaming engine that exploits the

aspect of this representation, [8], where the representation is

referred to as colour plus depth and level of detail (CZLoD). In

this study they first investigated human perception, by testing a

set of samples generated with a stimulus engine. The authors

found the just noticeable degradation and just acceptable

degradation levels, and subsequently used these for the dynamic

adaptation of the CZLoD, depending on network and user

conditions. With this engine, the real-time CZLoD can be adapted

to match user perception for the given available network

bandwidth and user conditions. This system represents the current

state of the art in 3D tele-immersive systems. Note that the

CZLoD representation is different from the full 3D polygonal

mesh that we deal with in this paper. The CZLoD representation is

a triangulation on a depth image, while a polygonal mesh is a

triangulation in a full 3D space.

3.2 Compression of Triangle Meshes
Peng [13] provides a survey of a number of compression methods

up to 2005. Some common terms in mesh compression are single

rate encoding, which refers to coding at one quality level;

progressive encoding, which allows lower quality reconstructions

if part of the data is received. Mesh coding can be connectivity

driven (encodes indices first) or geometry driven (encodes vertex

data first). Generally, geometry encoding can be lossy, but

connectivity coding should be lossless to maintain the original

topology. The single rate encoder that achieves the highest

compression rate is the Touma and Gotsman encoder [22].

Compressed progressive mesh [24] is a progressive compression

scheme that reconstructs a mesh by successive vertex splits and

allows both more coarse and more detailed views. Streaming

compression, as proposed by Isenburg et al. [14], can work on

small parts of the mesh, making it more memory efficient and

faster (large meshes may be too large to fit the main memory).

Currently, a standardization activity of 3D graphics as geometry

meshes is ongoing in the Motion Picture Experts Group (MPEG):

Scalable complexity 3D Mesh Coding (SC3DMC). The standard

provides 3 types of encoders with various settings in complexity

to allow a tradeoff between decoding speed and compression ratio

[15 16]. The most sophisticated coder, the triangle fan encoder, is

reported to achieve a compression rate close to the Touma and

Gotsman encoder.

Many other mesh compression methods that exploit various

topological properties have been developed. They offer the

compression performance needed to reduce the large data

streaming rate required in 3D tele-immersion. Unfortunately these

encoding mechanisms have not been explicitly designed for real-

time encoding, transmission and robustness to packet losses

needed for 3D Tele-immersion. A loss of connectivity data, for

example, could destroy the entire topology [17].

3.3 Transmission of Triangle Mesh Geometry
Robust real-time transmission of compressed mesh geometry over

lossy networks is challenging. Regib and Altunbasak [17]

propose 3TP, a streaming protocol that sends parts of the

compressed data over TCP and other parts over UDP. Given an

allowed acceptable degradation of the mesh, 3TP selects a

combination of packets to be sent over TCP and UDP. This

selection is then optimized for reducing the transmission delay

given the current level of packet loss. 3TP gives the user a lower

download time, but extensive offline preprocessing of the object is

required to do the selection. This makes it unsuitable for the

interactive streaming case, where geometry is captured, encoded

and transmitted live. Another somewhat similar but more generic

approach, by Li et al, is a middleware that allows streaming of

various different compressed mesh representations [18]. The

essence of this approach is that subsets of the representation can

be sent reliably or unreliably based on the type of data (i.e.

geometry/connectivity), the loss rate and the type of user

environment (renderer, terminal type). This approach works for

any type of mesh representations, as values are calculated offline

using the general distortion measure for mesh geometry Hausdorff

distance, described in [27]. This makes it more generic, but less

applicable for live captured data due to the complex pre-

processing step. Cheng et al. studied dependencies between data,

when streaming compressed progressive mesh (CPM) based

representations [19]. They found that packet loss in the initial

phase, when reconstructing from a coarse mesh with vertex split

operations, blocks the decoding process. When a vertex split

packet is lost, many other packets cannot be decoded until the

packet is retransmitted and successfully received. Cheng et al. do

not solve this problem, but model the effect mathematically. This

mathematical model of the dependencies in the data (using a

graph representation) is used to find an optimal packet scheduling

strategy (order of sending packets). Experimental evaluation

shows that they are able to reduce the delays (by minimizing long

term dependencies between packets).

In our work, we develop a 3D tele-immersion system that streams

live captured mesh geometry. Existing compression and streaming

methods are not geared towards the requirements of such

application.

Figure 2 3D representations, from image based to geometry

based, from [16]

Figure 3 Our 3D tele-immersion media pipeline realized(left

sender) receiver (left)

4. 3D IMMERSIVE MEDIA PIPELINE

4.1 3D Representation
3D video can be interpreted in different ways, such as the 3D

stereo video in the cinema with an artificial depth perception by

rendering a left and right image, or the free-view video that allows

viewpoint navigation. The work in [16], which we find

particularly useful, categorizes different representations on a

spectrum between image-based methods and geometry-based

methods (Figure 2). Examples of geometry-based representations

include triangle meshes and point clouds. Image-Based methods,

on the other hand, are similar to traditional video, since they use

multiple separate (possibly) interpolated views. Traditionally,

geometry-based methods have been restricted to games and virtual

worlds.

4.2 Media Pipeline
Figure 3 shows our media pipeline at the sender site. Further

details about the individual components of the system, and reports

of comparison to existing mechanisms, are provided in the next

two sections. First, humans are captured in real-time. Different

media are captured, audio, motion and visual. In this paper we

focus on the visual pipeline for a mesh geometry representation of

a human. As humans interact in real-time, low delay is required.

After capturing the representation has to be encoded using an

efficient compression method. Subsequently, streams and packets

are sent over the network. The right side of Figure 3 shows the

streaming module at the receiver site. The received packets are

first buffered and synchronized. Subsequently, the re-

construction of the stream takes place and the object is decoded

and rendered in real-time.

5. FAST COMPRESSION
Compression is one of the key methods to relieve the high

bandwidth demands. As mentioned in Section 2, subsequently

captured meshes can have a different number of independent

points and faces. Due to the lack of such a direct relationship

between the frames, we investigate static mesh codecs to encode

each mesh independently, without inter-frame coding.

 First, we qualitatively compare the different static mesh

compression mechanism identified in the literature for their

properties and applicability. Then, we present our own solution to

the problem, specifically addressing the requirements for enabling

a 3D tele-immersive system. We independently assess the

performance of our method and compare it with MPEG SC3DMC

Codecs.

5.1 Qualitative Comparison Existing Mesh

Compression Methods for 3D Tele-Immersion
In this section we qualitatively compare compression methods

based on the following criteria: C Compression Rate, E Encoding

speed, D decoding speed, SC scalable complexity, L tolerance to

loss and P progressive transmission, T shape topology

independence (if the compression method is geared to a specific

triangle mesh topology). We rate them from 1 (bad) to 5 (very

good). We use these criteria to make a selection of mesh encoders

that are suitable for real-time streaming.

Touma and Gotsman propose an encoder that encodes at high

rates, intended for semi-regular meshes. In the literature, this

codec is considered the best in terms of compression rate. This

encoder is not optimized for losses, progressive transmission, or

real-time encoding. Gumhold and Strasser propose a fast (real-

time) compression and decompression technique that codes at

high compression rates. We investigated this approach further,

and found a specific disadvantage. The data structure that is fed to

the algorithm (that makes it run in linear time) is not a typical list

of points and faces, but a data structure that allows random access

to a vertex indexed based on an edge. Creating such a data

structure from the captured mesh representation would minimize

the reported speedup advantages. We made an attempt to obtain

such data structure by using algorithms available in the C++

standard library. Specifically, we created a map with pairs of

points (edges) to index the other vertices in a typical captured

mesh. This already resulted in delays of over 200 ms on an Intel i7

machine compiled with a 64-bit Visual Studio Compiler in release

mode. The three SC3DMC encoders standardized in MPEG-4

SC3DMC (2009) have been developed for fast decoding and have

many coding options that provide scalable complexity. The

QBCR and SVA [16] are faster, but simpler codecs. The TFAN

[15] is a more complex single rate encoder, which allows fast

decompression for rendering and achieves compression rates near

to the Touma and Gotsman encoder. Up to now, MPEG or IETF

have not published any scheme for transmission using these

codecs over the Internet. However, their speed may make them

useful for 3D tele-immersion application. Khodakovsky et al. [26]

developed a progressive wavelet-based coder. The advantage of

this approach is that reconstructions are possible, even with

partially received data. A disadvantage is that it works only for

semi-regular meshes. The current implementation is available, but

currently works with ASCII-based files as an input, introducing

extra delays in the encoding. Compressed progressive Mesh

(CPM) presented in [24] was used in many studies on

transmission of geometries. It offers progressive transmission, but

losses of packets can delay the decoding process as studied in

[19]. Apart from that, this codec is not specifically optimized for

encoding speed. The approach of Topological surgery was

standardized in MPEG 3D Mesh coding (MPEG3DMC) [25], but

in practice it has not been used much mainly due to its slow

encoding speed and on its dependency on MPEG BIFS. Also, we

compressed some meshes with an open source compression

mechanism, OpenCTM1. This software employs entropy coding

and quantization to compress meshes, instead of state of the art

compression techniques geared to 3D meshes. This codec

introduces a delay of over 1s when applied to the modules

captured in our system and did not achieve rates comparable to

other methods that are described in the scientific literature.

Table 1 Qualitative Comparison of Triangle Mesh

Compression methods

Encoder Name C E D SC L P T

Touma and Gotsman [23] 5 1 3 3 1 1 2

Gumhold and Strasser [24] 5 3 5 2 2 1 3

TFAN (SC3DMC) [16] 5 2 4 3 2 1 2

SVA (3DMC) [17] 3 4 4 4 3 2 2

QBCR (3DMC) [17] 2 5 5 3 3 2 4

Khodakovsky et al. [30] 5 2 4 5 4 5 1

Pajarola and Rossignac [25] 4 3 5 4 1 5 2

Taubin and Rossignac

(3DMC) [26]

4 2 2 1 1 1 2

1 www.openctm.org

The 3 MPEG-4 SC3DMC encoders with different complexities

and options provide good compression rates and fast decoding.

We chose to integrate them with our system for further evaluation.

The software, available on mymultimediaworld.com also works

with ASCII (text based) formats. The classes provided by this

codecs can also be used to directly encode the binary incoming

indexed face set, the common representation of polygon a Mesh.

To achieve this, we wrote an extra C++ class to interface this

codec, integrating it with our 3D tele-immersive system.

5.2 Fast Compression Heuristic for Captured

Meshes
None of the current solutions for 3D triangle mesh compression

are specifically geared to our envisioned 3D tele-immersion use

case. In order to address this issue, we developed our own fast

local compression method that is capable of real-time encoding

and decoding and that meets the requirements introduced in

Section 2. Unlike generic mesh compression methods, this

algorithm takes advantage of the properties, present in meshes

reconstructed from multiple depth images. The two most

important observations exploited are:

1. Subsequent coordinates in the list of vertices are co-located, we

exploit this with differential coding and local quantization.

2. The face indices resulting from triangulation on multiple depth

images are highly structured and show repetitions that can be

exploited.

Our algorithm for compressing the geometry (points) is presented

as Algorithm 1, the connectivity compression method in

Algorithm 2. The code is provided as pseudo-code in Tables 2, 3

and 4. Algorithm 1 takes the mesh geometry (a list of points) from

the capturing component and processes it piece by piece. The

algorithm allocates storage for the expected number of

compressed blocks stored in coded_data. In the while iteration the

geometric data points are processed into compressed blocks of an

approximately constant size of about 1436 bytes. Algorithm 1b

illustrates how the individual blocks are processed. For each local

block of data, first the maximum difference in its range is

computed with the method compute max diffs per vertex value().

Based on the local maximum difference per subvalue

quantization vectors are computed. These vectors are used to

quantize the rest of the differences between the specific subvalues

in the block. A non-linear base quantizer was adopted with a

higher resolution in the lower values, as experimentation showed

that this kept more specific details in the mesh. In line 3 in

algorithm 1a, based on the computed maxima, the number of

vertices for each block is computed. By default each value is

assigned 4 bits, but 0 bits will be assigned if certain subvalues do

not change. As the blocks maintain about equal size, the number

of vertices in the packet differs, based on this allocation (this is

calculated by computing n_vertices for required

datablock_size(P)). Subsequently, in the for loop in Algorithm 1a,

the differences are encoded by quantizing them with the local

quantizer (that was computed from the maxima). The values are

stored in the block coded_data. The starting coordinates, local

maxima and the number of vertices are also stored in the

compressed block (data structure c_block), as they are needed in

the decoding process. The index value is currently also added, in

the future this could allow more flexible processing such as

parallel or on the fly execution using GPU’s. Currently the blocks

are encoded and decoded in linear fashion.

ALGORITHM 1a Geometry Compression

INPUT: P

Block of floating point

geometric data: nV vertices

with w floats of data per

vertex

OUTPUT: c_data, N N blocks of piecewise

compressed data (c_data)

COMPRESS_GEOMETRY P, nV, w:

c_blocks = c_block[max_number_of_blocks]

nr_vertices_processed = 0

nr_blocks = 0

pos = 0

While (nr_points_processed < nV)

 compress_geometry_block(P.next() c_block.next())

 nr_points_processed += c_block->nr_vertices_in_block

 nr_blocks++

End

return c_data, nr_blocks

ALGORITHM 1b

 COMPRESS_GEOMETRY_BLOCK P, &block :

INPUT: P, block

P: block of floating point values

representing local points of the

mesh ,

Block: an empty struct c_block

representing a compressed block

of data (to be filled)

OUTPUT: n_vertices,

block

The number of vertices encoded in

the block, the filled block of

compressed data

Vector max_diffs = compute_max_diffs_per_vertex_value()

q_vec = compute_quantization_steps(max_diffs, w_vec)

nr_vertices=compute_n_vertices_for_required_datablock_size(P)

coded_data[w][n_vertices]

For(j=1….w)

 prev[j] =P[j][0]

 For(i=1…..nV){

 diff = P[j][i]- prev[j]

 cindex == qvec.find_index_closest_to(diff)

 coded_data[j][i] = cindex

 prev[j] = qvec[cindex] + prev[j];

 End

End

Block->start_coords[0…w] = P[0…w][0]

Block-> max_v[0…w] = max_diffs[0…w]

Block-> nr_vertices = nr_vertices

Return n_vertices

DATASTRUCTURE C_BLOCK

Int start_index, int nr_vertices;

 vector max_v ,vector start_coords

byte[] coded_data

Table 2 Algorithm 1 Geometry Compression

Algorithm 2 handles the connectivity compression. The mesh

reconstruction process introduces repetition patterns in the

connectivity data. The patterns were repeating differences [+a,+a

….], alternating differences [+a,+b,+a,+b] or [+a,+a,+b,+b.] As

such, patterns can occur many times, actively searching for them

and encoding them as a coded sequence which we call a run

obtains a large reduction in connectivity data size. Algorithm 2

starts by initializing three vectors to store the differences between

points of subsequent faces. For example if face 1 <a,b,c> and

face 2 <d,e,f>, then these differences will be d-e, e-b and f-c. In

the beginning of Algorithm 2, we run over the entire list of faces

to find these patterns (find_run_pattern) and store them in

pattern_runs. Subsequently, in the for loop in Algorithm 2, either

a difference between values in consecutive faces is stored in

T_Coded, or, if a pattern_run was previously found, this pattern is

added to T_Coded. Specifically, this is done by adding an escape

value to the T_coded vector and the sequence of values

representing the pattern_run (see datastructure pattern_run). The

loop index i is then incremented with the length represented in the

pattern run. In this way, the indices are either stored as 16 bit

differences, or encoded in a pattern run. Specific entropy coding

such as Huffman and Entropy encoding are avoided, so no extra

latency is introduced. In practice, over 90% of the connectivity

information is stored in runs.

Algorithm 2b represents the pattern search algorithm. In our case,

we store repeating differences, and when a pattern is broken that

has been repeated more than 32 times, we store the pattern as a

pattern run. These patterns are then assessed in Algorithm 2.

ALGORITHM 2

Connectivity Compression

INPUT: T , nT

Array of 3 by nT representing the

Triangles

OUTPUT: T_coded 3 vectors with coded geometry data

COMPRESS_CONNECTIVITY T, nT

T_coded[3][]

pattern_runs[] = find_run_patterns(T,nT)

For(j=0….3)

 For(int i=0…nT)

 d_[j] = T[j][i] – T[j][i-1];
 T_coded[j] .append(d_[j]);

 if(pattern_run.colum == j AND pattern_run.start ==i)

 T_coded [j].insert_pattern_run(pattern_run)

 pattern_run = pattern_run.next()

 i.increment(pattern_run.length)

 End
 End

End

return c_data, nr_blocks

ALGORITHM 2a FIND_RUN_PATTERNS

INPUT: T[w][nT] , nT Array of 3 by nT representing the

Triangles

OUTPUT: run_d[3] 3 vectors with pattern run data

structures

run_d[3][]

diffs[4]

run_counter[nr_modes]

first_triangle[3] = T[0…2][0]

For(i=2; ……nT)

 diffs = compute_local_diffs

 if(pattern = find_pattern())

 run_counter.increment()

 if(pattern broken and run_counter > thresh)

 patterns.add(pattern);

End

DATASTRUCTURE PATTERN_RUN

Int mode, length, diff1,diff2,start,value;

Table 3 Algorithm 2 Connectivity Compression

The decompression algorithm is provided as pseudo-code in Table

4. The blocks of compressed geometry data, represented as

c_block datastructures are all subsequently processed by

algorithm 3a. Algorithm 3a re-computes the local quantization

vector of the differences based on the max_v field. Then, based on

start_coords the differential decoding of the geometric data is

performed. The second decompression step involves the decoding

of the connectivity data. The first values of T_Coded represent the

first face, then based on this face differential reconstruction of the

different face columns is performed. When an escape value is

found in T_coded for a run, the run is decoded into respective

column of the faces. By processing all the values in T_Coded, the

complete connectivity is reconstructed.

ALGORITHM 3 De-Compression

INPUT: c_data[N]

T_coded

N coded data c_blocks from

algorithm 1 and the vectors T_coded

obtained from algorithm 2

OUTPUT: P[w][nV],

T[3][], nT

The geometry data: nV vertices of w

floats each, the number of faces nT

DECOMPRESS_MESH c_data, T

P[][]

for(block in c_data)

 P.append(decode_c_data_block(block))

For(j=0…3)

 T[j][0] = T_coded[j][0]

 for(i=1…… nT, k=1…..nT){

 if(T_coded[j][k] == run_start)

 T[j][i…i+runlength] = decode_run(T_coded[j][i])

 i.increment(runlength);

 j.incremenent(6);

 Else{

 T[j][i] = T[j][i-1] + T_coded[j][i];

 End

End

ALGORITHM 3a Decode c_data_block

INPUT: c_block A coded block of geometric data

(a struct of c_data)

OUTPUT: P[w][] Block of points from the decoded

mesh of w floats per vertex

Prev[0…w] = c_block-> start_coords[0….w]

Compute_local_quantization_bounds(c_block->max_v)

for(i=0…..w)

 prev = c_block->start_coords[i]

 for(j=0……c_block->n_vert)

 P[i][j] = prev + q_diff(c_block->coded_data[i][j])

 Prev = P[i][j]

 End

End

Table 4 Algorithm 3 Decompression Algorithm

5.3 Experimental Results
In this section we evaluate the performance of our method with

live captured data. Figures 4 to 11 show the results in terms of

compression size, coding latency and distortion.

Our scheme was implemented in C++ using Visual studio and

compiled using a 64 bit compiler. The tests ran on an Asus laptop

(PRO64J) with a first generation (1.6 Ghz) mobile Intel i7

processor with 4GB of ram and Windows 7 home edition. The

MPEG SC3DMC Codecs were compiled from source code with

the same compiler and ran in the same environment. The tests

were run offline with previously captured data stored in files. All

files are first completely loaded into memory before the

compression routine is started. The running times are recorded

with os wall clock times in boost C++ that provide a wall clock

time in Windows 7 with a resolution around 366 ns.

The first set of experiments (Figures 4-7) show the performance

when the capturing device is a single Kinect and the capturing

mechanism is tuned to capture objects within a 130 cm range.

This represents a situation where a user is behind a pc with a

Kinect on it. We captured high-quality representations for this

dataset with on average 72,855 vertices per frame and 143,302

faces. Each vertex points contains 9 floating point values, 3 for

coordinates, normal and colors each. The raw frames are therefore

about 4.3 MB each. As shown in Figure 4, the size is reduced by

more than a factor 10, close to the performance of triangle mesh

Encoder TFAN (tuned with 8 bit quantization and differential

encoding). Figure 5 shows a qualitative comparison between the

reconstructed frames from the different coding mechanisms. This

qualitative comparison is based on the Haussdorf distance (rms)

and measured with a tool developed in [31]. The values measured

represent the root mean square distance between the original and

the reconstructed surface. The models decoded with our scheme

have slightly less distortion and in theory are slightly better

reconstructions. Note that the distortion differences (Haussdorf

distance rms) between the models of 0.0004 are not significant

(the reconstructions are of comparable quality). We chose the

quantization values such that they allow a fair comparison

between different algorithms (operating at similar quality). As we

have lower distortion, it is fair to compare speed and size

(assuming the quality is at least as good from human perception).

The main gain of our heuristic is in the speedup. We can encode

the high quality representation in about 70 ms, and decode it

consistently below 10 ms.

Figure 4 Compression size of live captured data frames with

different methods (130 cm 1 Kinect) (Kb)

Figure 5 Distortion quality of decompressed representation -

Hausdorff Distance (rms) - to original frame (130 cm 1 Kinect

data)

This result implies a speedup of over 100% compared to the state

of the art MPEG 3DGraphics encoder at only a slightly lower

compression gain. Most gain is achieved in compressing the

connectivity data, of which in most cases over 90% is encoded in

runs. Figures 9-12 compare the different possible setups and

0

200

400

600

800

1000

1200

1 3 5 7 9 1113151719

 compression
size with qbcr
 SVAsva

tfan

Our Method

si
ze

 [
K

b
]

0,0002

0,00025

0,0003

0,00035

0,0004

0,00045

0,0005

0,00055

0,0006

0,00065

0 1 4 8 11 13 15 17 19

QBCR SVA

TFAN Our Method

d
is

to
rt

io
n

 [
H

au
ss

d
o

rf
 r

m
s]

encoding solutions. In this case we compare setups with 5 Kinects

and 1 Kinect at both high and low quality at a bit longer distance

(300 cm), representing a more console like or living room like

experience. The high quality 5 Kinect representation is the most

challenging, as the frames consist of about 253,000 vertices and

487,500 faces on average. Our heuristic is able to process such a

frame into a 1 MB block in on average 160ms. Further

parallelization would allow transportation of such highly realistic

captured realistic representations in real-time. Our heuristic

heavily outperforms other methods on the speed requirement that

is critical for our application.

Figure 6 Encoding time with different methods [ms] (130 cm

one kinect)

Figure 7 Decoding time with different methods [ms] (130 cm

one Kinect)

Figure 8 Low Res (~253K vertices) Data with 5 Kinects (300

cm)

Figure 9 High Res (~72K vertices) Data with 5 Kinects (300

cm) (size in kb time in ms)

Figure 10 Low Res Data (17K vertices) with One Kinect

(300cm)

Figure 11 High Res (~70K vertices)Data With 1 Kinect (300

cm)

5.4 Discussion
The component developed in this section meets the requirements

for 3D triangle mesh based tele-immersion. First, it handles in

real-time full geometric input frames of up to 100,000 vertices. It

avoids (except for once in the connectivity encoding) global

searches/re-orderings. Moreover, the way the data is handled in

small consecutive independent blocks allows parallelization and is

computation/memory efficient. These small blocks also enable

more flexible I/O. For example, in future scenarios meshes might

be only partially sent/compressed or reconstructed. Also, in terms

of bandwidth it performs similarly to the TFAN codec on the live

captured meshes reconstructed in our capturing system.

The development of this 3D mesh compression mechanism, which

works well with capturing systems, is a key step towards enabling

the 3D tele-immersion system based on geometry. Local

operation, real-time encoding and decoding are desired properties

of such mechanisms.

6. REAL-TIME TRANSMISSION
Generally, interactive communication over lossy networks has

been tackled with the possibility of omitting information at the

receiver. Modern video codecs implement the possibility of

decoding at reduced resolution or frame rate, should not all the

information arrive at destination within a target end-to-end delay.

Units that can be dropped are generally small and have poor

impact on the continuity of the service. Triangle mesh

compression has not been designed to be resilient to information

losses. Thus the loss of a packet can waste a lot of resources since:

1. The packet needs to be retransmitted to make sure the mesh

can be decoded, yielding to uncontrollable delays (e.g.,

TCP)

2. If the frame is skipped, bandwidth is wasted for information

that is not decoded.

In our tele-immersive system, we implemented a rateless code to

achieve minimal end-to-end delay and protection against packet

0

500

1000

1500

2000

1 3 5 7 9 11 13 15 17 19

qbcr

 SVA

 tfan

our methodEn
c.

 T
im

e
 [

m
s]

0

50

100

150

1 3 5 7 9 11 13 15 17 19

QBCR

SVA

TFAN

D
ec

o
d

in
g

Ti
m

e[
m

s]

0 100 200 300 400 500 600

Comp Time[ms]

Dec Time[ms]

Size[Kb] our method
tfan
sva
qbcr

0 1000 2000 3000 4000

Comp Time[ms]

Dec Time[ms]

Size[Kb] our method

tfan

sva

qbcr

0 50 100 150 200 250 300

Comp Time[ms]

Dec Time[ms]

Size[Kb]
our method
tfan
sva
qbcr

0 200 400 600 800 1000 1200

Comp Time[ms]

Dec Time[ms]

Size[Kb] our method

tfan

sva

qbcr

losses. In this section we introduce the concept of rateless coding

and we compare it to resilient transmission via TCP, based on a

number of real experiments, and show its favorable properties for

geometry transmission and 3D tele-immersion.

6.1 Rateless Coding
Random Linear Coding aims to achieve packet loss protection

with near optimal rate and quick adaptation to the network

conditions. The idea of rateless and fountain codes is that any

amount of packets can be generated at the sender. The first

practical Random linear codes were first proposed in [20].

Currently, codes like Raptor and RaptorQ have been proposed as

standards by IETF [29][30]. The benefits include linear encoding

and decoding time of the data (compared to quadratic time in

Reed Solomon codes). The codes are called rateless, as the

amount of data generated is not fixed, in case of increased packet

loss in the network, the data generated can be increased for extra

protection. This constitutes one of the main advantages compared

to traditional fixed rate FEC codes such as Reed Solomon codes.

Additionally rateless codes also reduce the end-to-end delay,

because they do not need retransmission of information. The

receiver then only has to receive a set of packets to make sure the

reconstruction of the frame is possible. A symbol based version of

rateless codes, more similar to our proposed technique, has been

also adopted in the field of network coding [31, 32] to allow

receivers to decode from packets recursively encoded by different

nodes.

6.2 Implementation
The data stream is divided in units that are encoded together

(similar to NAL units in the H.264/AVC standard), e.g., frames

containing the triangular mesh at a certain instant. We further

divide these segments in generations and datablocks (See Figure

12). We adopt packet-based random linear coding on a Galois

Field (GF). Blocks belonging to a generation are always meant to

be coded with blocks from the same generation.

Figure 12: Arrangement of blocks for rateless coding

Each block is a sequence of codewords, each codeword made of

 bits each (typically 8 bits, or a multiple of 8 bits), so that

encoding and decoding operations are performed in an algebra

over a Galois Field (GF) of size . A new packet is generated by

linearly combining the source blocks of the current generation

with random coefficients . A codeword from a

new coded block
 , of generation can

be expressed as:

 ∑

 , (1)

where

 is the -th codeword of the -th block in generation .

Figure 13: Example of rateless coding and decoding from

linearly independent subsets of packets

The coefficients of the linear combination are embedded in the

packet header, to make sure the receiver knows which specific

linear combination has been received. Decoding operations are

also performed between blocks labelled with the same generation.

As soon as enough packets are received for a generation, the

coefficients are used to build a linear system that allows

decoding and recovering the data. Figure 13 shows a simple

example of how packets randomly-coded from 2 two source

blocks are decoded from any linearly independent subset of

blocks. In order to reduce the decoding computational load, we

construct a composite matrix of data, and coefficients of the

incoming packets and perform Gaussian elimination each time a

new packet is received. This spreads the computational cost over

time and drastically reduces the decoding complexity. Such

complexity can be still reduced by reducing the dimension of the

coding space. These factors need to be properly considered:

1. Loss protection (Larger coding diversity).

2. Decoding complexity (Smaller linear system).

Properly balancing the coding space between big linear systems

(more coding diversity, more decoding complexity) and small

systems (less coding diversity, less complexity) allows achieving

optimal delay performance and the required resilience against

packet losses.

Figure 14: Transmission delay of TCP and rateless coding

varying depending on the available channel rate.

Figure 15: Transmission delay of TCP and rateless coding in

seconds, due to network delays.

Figure 16: Transmission delay of TCP and rateless coding in

seconds, due to packet losses.

6.3 Experimental Results
In order to assess the delay performance of the rateless coding

system we run some experiment on an experimental setup

composed by two Intel Core i5 machines (3.10 GHz): one in

charge of capturing, encoding and transmission and one receiving

from the network and decoding the source data; a network

emulator that reproduces a large variety of network conditions in

terms of delay, bandwidth and packet loss rate is run in the

receiving machine. Our rateless transmission system makes use of

UDP packets and is compared with a standard self-managed and

reliable TCP connection. The factor influencing the efficiency of

our rateless transmission is the ratio between throughput and

source rate, given a certain packet loss rate. This should always be

able to sustain the source information rate. We show the delay

performance relative to a set of experiments with limited

bandwidth, variable delay, and packet loss rate. Delays and packet

losses in the network affect only linearly the delay performance of

the rateless decoding, as opposed to TCP that needs to engage

mechanisms of recovery every time a packet is lost. The

mechanisms of recovery are further affected by the link delay. We

analyse now the delay introduced by the transmission and channel

coding and decoding and the way this is affected by the network

conditions. Figure 14 shows the introduced delay and the

influence of the available bandwidth, with different packet loss

and delay conditions. Rateless coding works best when extra

bandwidth is available, in order to cope with some additional

overhead. Figure 15 shows the delay performance depending on

the latency of the network, whereas Figure 16 shows again the

transmission delay and its sensitivity to packet losses. Although in

some ideal conditions TCP reaches optimal transmission

performance, it suffers large transmission delay in the case of

network delays and packet losses, making it unsuitable in realistic

networking conditions. In the rateless system, the influence of

network impairments is linear and controllable, often hardly

mutable even in realistic networking conditions. The rateless code

achieves good delay performance.

7. 3D TELE-IMMERSIVE SYSTEM

7.1 3D Triangle Capturing and Rendering
The capturing component was provided by the Center for

Research and Technology Hellas. It creates reconstructions in

real-time (8-10fps) of humans using range images (RGB plus

depth) captured with multiple Kinects. An early version of the

system is described in detail in [7]. The system is based on

merging tessellated depth images using either zippering or

volumetric method, which are the most common methods to

reconstruct a triangle mesh from multiple depth images. The

render component renders meshes in real time with shading based

on global illumination effect using the normal data in the vertices.

This component was implemented with OpenGL and QT and

provided by Institut Telecom, Paris. These components have been

linked together to construct the immersive prototype.

7.2 Media Pipeline Performance
We tested the computational performance of the media pipeline in

two different ways. Table 5 shows the results when running the

sender and receiver on one machine (a 1.6 Ghz intel i7 laptop,

4GB Ram). We captured meshes with one depth camera,

reconstruct them and send them over the local interface back and

render them. In the process, we recorded the time taken by

capturing, encoding, decoding and the rate at which frames were

sent and received. The update frequency (refresh rate) of the

renderer to the screen was also tested. This illustrates achievable

frame rate in the pipeline.

Sub-part Average [ms] Std [ms]

Capturing 94 ms 5,3 ms

Encoding 52 ms 3,5 ms

Decoding 11 ms 1,1 ms

Rendering 46 ms 4 ms

Send-Rate 5-8 fps

Recv-Rate 5-8 fps

Table 5 Performance of 3D Tele-Immersive Pipeline on local

interface (Captured Meshes with around 50,000 vertices)

The graphs in Figure 17 and Figure 18 show the global end-to-end

delay of the system from capturing to rendering, using both the

traditional transmission over TCP and our rateless coding system.

In this case two Intel Core i5 machines (3.10 GHz) PC’s are

connected (sender and receiver) and the network impairment

simulator is used to generate the networking conditions between

the machines (connected in the LAN). The delay over the link was

10ms in all experiments, while data could be medium or high

resolution. The medium resolution frames contained around 16-

18k vertices (90-100 kbytes per compressed frame). The high

resolution was around 50k vertices, (280-300 kbytes compressed

per frame). We performed different tests, with 0% and 1% packet

loss. Figure 17 and 18 show that the system still enables real-time

communication in the case of packet loss/delay. The system also

allows reconstruction and reliable transmission without

retransmission. By employing rateless coding over UDP and fast

mesh compression we avoid exceeding the target end-to-end delay

for interactive applications of about 300 ms including live

capturing and 3D rendering.

Figure 17 End-to-end delay with no packet loss

Figure 18 End-to-end delay with 1% packet loss

8 Discussion

This paper presents a prototype implementation that enables

conferencing between remote participants, focusing on the

compression and the transmission components. The novelty is that

our 3D tele-immersion system is based on triangle mesh

representations, unlike previous solutions. The triangle mesh

representation has traditionally been supported by computer

graphics in virtual worlds and games. Real-Time streaming of

captured mesh data, therefore, will enable novel applications that

can integrate real and virtual worlds. The prototype addressed

some of the significant challenges that triangle mesh

representation poses to the media streaming pipeline in terms of

latency, data-volume and robustness to losses.

The contributions can be summarized as follows:

Encoding/Decoding: triangle mesh codecs have not been designed

with the interactive scenario in mind. The encoding time is simply

often too long. We developed a local method that takes advantage

of specific properties resulting in a speed increase of ten times

when compared to the TFAN encoder from MPEG, at comparable

quality/rate. The method works well with the meshes produced by

our capturing system. It takes advantage of the coherence property

of the captured mesh. This property was also found to be present

in reconstructed and captured meshes in [14]. Also, the relatively

simple operations of this method and block separation allow for

fast parallel or hardware implementations.

Streaming: systems that efficiently transmit geometry in real-time,

generally dealt with stored objects instead of captured

reconstructions. Such middleware solutions, and application-layer

protocols [17][18][19], facilitate efficient real-time downloading

of a mesh. This is achieved by an offline optimization step, which

cannot be performed in geometry-based 3D tele-immersion

systems. We do not develop a specific middleware or protocol but

introduce an implementation of a rateless code (inter-packet fec)

that protects each mesh frame against packet losses. Rateless code

allows any given number of extra packets to be generated,

depending on the amount of protection that is needed. Rateless

codes, like Raptor and its successor RaptorQ, have both been

proposed as standard by IETF [33][34] in 2007 and 2012, but

have seldomly been tried for real-time streaming of geometry-

based data. Our experiments show the favorable properties of the

rateless code, such as low end-to-end delay compared to TCP in

case of packet loss of over 2%. Moreover, the distributed

implementation of the packet decoder introduced a modest delay

of 50 ms. In addition, the streaming method is generic, video

audio and other data can also be efficiently transported in real-

time based on this code.

3D Tele-immersion: this paper presents a prototype of a triangle

mesh based 3D tele-immersion system. This prototype is

integrated with state of the art capturing and rendering

components. None of the previously presented 3DTI systems can

capture and stream full 3D reconstructions in real-time. On top of

that, state of the art rendering techniques can be applied such as

global illumination. The focus in this paper was on the visual

media pipeline, but further integration with spatial audio

techniques such as binaural hearing are planned in the near future.

A next integration step will include merging the received 3D mesh

live into a virtual world adding spatial audio.

CONCLUSION
This paper presented a 3D tele-immersion pipeline based on

captured mesh geometry. The demanding requirements of the

application have been addressed in different parts of the media

pipeline. By doing this, we extended the state of the art in

handling mesh geometry to meet the live captured case. First, we

developed a local fast compression method that, contrary to

previous codecs, takes advantage of the specific properties of real-

time captured/reconstructed meshes. Second, we implemented a

streaming mechanism based on a rateless code that allows robust

transmission as is needed for protecting the loss-sensitive mesh.

This system was integrated with state of the art rendering and

capturing components. In the future, further integration with

spatial audio and virtual words is planned.

8. ACKNOWLEDGMENTS
Thanks to Demetrios Alexiadis and Petros Daras at the CERTH

for providing datasets and the reconstruction software,. Tamy

Boubekeur from Telecom Paris Tech for providing the lightweight

MESH Rendering Engine. The research leading to these results

has received funding from the European Community's Seventh

Framework Programme (FP7/2007-2013) under grant agreement

no. ICT-2011-7-287723 (REVERIE project). We thank the people

at Institut Telecom and Multimedia world for making the codecs

available.

9. REFERENCES
[1] Yang Z., Yu B., Diankov R., Wu W., and Bajcsy W.

Collaborative Dancing in Tele-Immersive

Environment(2006). ACM International Conference on

Multimedia (MM) pp. 723-726

[2] Forte M., Kurillo G., Cyberarchaeology - Experimenting

with Teleimmersive Archaeology (2010) 16th International

Conference on Virtual Systems and Multimedia (VSMM

2010), pp 155-162.

[3] Kurillo G. , Bajcsy R., Kreylos O., Rodriguez R., Tele-

immersive environment for remote medical collaboration

(2009). In Proceedings of Medicine Meets Virtual Reality

(MMVR17), pp. 148-150.

[4] Nahrstedt K. , Bajcsy R., Wymore L., Kurillo G., Mezur

K., Sheppard R., Yang Z. , and Wu. W. (2007), Symbiosis

of Tele-Immersive Environments with Creative

Choreography. ACM Workshop on Supporting Creative Acts

Beyond Dissemination 2007 (in conjunction with CCC’07).

[5] Kauff P., Schreer O. An immersive 3D video-conferencing

system using shared virtual team user environments (2002).

In Proceedings of the 4th international conference on

Collaborative virtual environments (CVE '02). ACM, pp 105-

112

[6] Alexiadis D., Kordelas D.S., G. Apostolakis, K.C.

; Agapito, J.D. ; Vegas, J.M. ; Izquierdo, E. ; Daras,

Reconstruction for 3D immersive virtual environments

(2012). 3th International Workshop on Image Analysis for

Multimedia Interactive Services (WIAMIS) pp.1-4

[7] Vasudevan R., Kurillo K., Lobaton E., Bernardin T.,Kreylos

O., Bajcsy R., Nahrstedt, K. High Quality Visualization for

Geographically Distributed 3-D Tele-immersive

Applications(2011). IEEE Transactions on Multimedia, Vol.

13, NO 3, June 2011 pp. 573-584

[8] Wu W., Arefin A., Kurillo G., Argawal P., Nahrstedt K.,

Bajcsy R., Color-plus-Depth Level-of-Detail in 3D Tele-

Immersive Video: A psychophysical Approach (2011). In

Proceedings of the 19th ACM international conference on

Multimedia (MM '11). ACM, New York, NY, USA, pp. 13-

22.

[9] Towles H. , Chen W. , Yang R., Kum S. , Fuchs H.

Kelshikar., Mulligan J. , Holden L., Zeleznik B., Sadagic A. ,

Forman J.L., 3D Tele-collaboration over internet2. (2002).

International workshop on tele presence 2002, Juan Les Pins

[10] Ott, D.E. and Mayer-Patel, K., 2004. Coordinated multi-

streaming for 3D tele-immersion (2004). 12th Annual ACM

International Conference on Multimedia, pp. 596—603.

[11] Yang Z., Wu W., Nahrstedt K., Kurillo G., and Bajcsy R..

2010. Enabling multi-party 3D tele-immersive environments

with ViewCast. ACM Trans. Multimedia Comput. Commun.

Appl. 6, 2, Article 7 (March 2010), 30 pages.

[12] Huang, Z., Wu, W., Nahrstedt, K., Rivas, R. and Arefin, A.,

SyncCast: Synchronized dissemination in multi-site

interactive 3D tele-immersion (2011). 2nd Annual ACM

Conference on Multimedia Systems (MMSys '11)., pp. 69—

80.

[13] Peng J., Kim C.S., C-C jay Kuo. Technologies for 3D Mesh

Compression: A survey. Elsevier journal of visual

communication and image representation(2005) pp. 688-733

[14] Isenburg M., Lindstrom P., 2005. Streaming meshes (2005).

IEEE Visualization (VIS 05) pp 231-238

[15] Mamou, K., Zaharia, T. and Prêteux, F. TFAN: A low

complexity 3D mesh compression algorithm (2009),. Comp.

Anim. Virtual Worlds, 20: 343–354.

[16] Jang E.s., Lee S., Koo B., Kim D., Son K.Fast 3D Mesh

Compression using Shared Vertex Analysis (2010) ETRI

Journal, Volume 32, Number 1, February 2010

[17] AlRegib G. and Altunbasak Y., 3TP: An application-layer

protocol for streaming 3-D graphics,(2005) IEEE Trans. on

Multimedia, Vol. 7, No. 6, pp. 1149-1156

[18] Li H., Li M., and Prabhakaran B.. Middleware for streaming

3D progressive meshes over lossy networks (2006.). ACM

Trans. Multimedia Comput. Commun. Appl. 2, 4 (November

2006), 282-317.

[19] Wei Cheng, Wei Tsang Ooi, Sebastien Mondet, Romulus

Grigoras, and Géraldine Morin. 2011. Modeling progressive

mesh streaming: Does data dependency matter?.(2011) ACM

Trans. Multimedia Comput. Commun. Appl. 7, 2, Article 10

(March 2011), 24 pages.

[20] John W. Byers, Michael Luby, Michael Mitzenmacher, and

Ashutosh Rege. A digital fountain approach to reliable

distribution of bulk data(1998). SIGCOMM Comput.

Commun. Rev. 28, 4 pp. 56-67.

[21] Smolic, A., 3D Video and Free-viewpoint Video-From

Capture to Display (2011). Elsevier Pattern Recognition

Volume 4 Issue 9 pp. 1958-1968

[22]] Touma C., Gotsman T., Triangle mesh compression,

(1998) Proceedings of Graphics Interface, 1998,pp. 26–34.

[23] Gumhold S., Straßer W., Real time compression of triangle

mesh connectivity(1998), in: ACM SIGGRAPH’98 pp. 133–

140.

[24] Pajarola R., Rossignac J., Compressed progressive meshes,

IEEE Trans. Vis. Comput. Graph. 6 (1) (2000) pp. 79–93.

[25] Taubin G., Rossignac J., Geometric compression through

topological surgery, ACM Trans. Graph.17 (2) (1998) pp.84–

115.

[26] Khodakovsky A., Schroeder P., Sweldens W. Progressive

geometry compression(2000). In Proceedings of the 27th

annual conference on Computer graphics and interactive

techniques SIGGRAPH '00. pp. 271-278.

[27] Aspert, N. Santa-Cruz D., Ebrahimi T., MESH: Measuring

Error between Surfaces using the Hausdorff distance (2002),

in Proceedings of the IEEE International Conference on

Multimedia and Expo 2002 ICME pp. 705-708

[28] M. Luby (2002). "LT Codes". Proceedings of the IEEE

Symposium on the Foundations of Computer Science: pp.

271–280.

 [29] M. Luby, A. Shokrollahi M. Watson, T. Stockhammer, RFC

5053 Raptor Forward Error Correction Scheme for Object

Delivery (2007)

[30] M.Luby A. Shokrallahi, M. Watson, T. Stockhammer,

L.Minder RFC 6330 RaptorQ Raptor Forward Error

Correction Scheme for Object Delivery(2011)

[31] Li, S.-Y.R.; Yeung, R.W.; Ning Cai; , "Linear network

coding,"(2003) Information Theory, IEEE Transactions on ,

vol.49, no.2, pp.371-381, Feb. 2003

[32] Chou P.A., Wu Y., and Jain K.. Practical network coding.

In Allerton Conference in Communication, Control and

Computing, Monticello, IL, Oct. 2003.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Alexiadis,%20D.S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Alexiadis,%20D.S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Apostolakis,%20K.C..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Apostolakis,%20K.C..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Agapito,%20J.D..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Vegas,%20J.M..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Izquierdo,%20E..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Daras,%20P..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Daras,%20P..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Daras,%20P..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6220981
http://en.wikipedia.org/wiki/Michael_Luby

