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ABSTRACT 

3D Tele-immersion enables participants in remote locations to 

share, in real-time, an activity. It offers users natural interactivity 

and immersive experiences, but it challenges current networking 

solutions. Work in the past has mainly focused on the efficient 

delivery of image-based 3D videos and on the realistic rendering 

and reconstruction of geometry-based 3D objects. The 

contribution of this paper is a complete media pipeline that allows 

for geometry-based 3D tele-immersion. Unlike previous 

approaches, that stream videos or video plus depth estimate, our 

streaming module can transmit the live-reconstructed 3D 

representations (triangle meshes). Based on a set of comparative 

experiments, this paper details the architecture and describes a 

novel component that can efficiently stream geometry in real-

time. This component includes both a novel fast local 

compression algorithm and a rateless packet protection scheme 

geared towards the requirements imposed by real-time 

transmission of live-capture mesh geometry. Tests on a large 

dataset show an encoding and decoding speed-up of over 10 times 

at similar compression and quality rates, when compared to the 

high-end MPEG-4 SC3DMC mesh encoder. The implemented 

rateless code ensures complete packet loss protection of the 

triangle mesh object and avoids delay introduced by 

retransmissions. This approach is compared to a streaming 

mechanism over TCP and outperforms it at packet loss rates over 

2% and/or latencies over 9 ms in terms of end-to-end transmission 

delay. As reported in this paper, the component has been 

successfully integrated into a larger tele-immersive environment 

that includes beyond state of the art 3D reconstruction and 

rendering modules.  This resulted in a prototype that can capture, 

compress transmit and render triangle mesh geometry in real-time 

over the internet.  

Categories and Subject Descriptors 

H.4.3 [Information Systems Applications]: Communications 

Applications – Computer conferencing, teleconferencing, and 

videoconferencing  

General Terms 

Algorithms, Measurement, Experimentation 
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1. INTRODUCTION  
3D Tele-immersion provides a common virtual space, where 

distributed participants can naturally interact. Advances on 3D 

reconstruction and rendering – and the success of the Microsoft’s 

Kinect – enable, in real-time, the creation of highly realistic 

representations of the participants as triangle mesh models (see 

Figure 1). Efficient real-time transmission of these representations 

opens up new possibilities for 3D tele-immersion and mixing real 

and virtual environments. Unfortunately, existing video codecs 

and packetisation schemes do not support such representations 

(neither do geometry streaming mechanisms intended for 

downloading and interacting with remotely stored geometry-based 

objects). This paper takes the first step towards this direction, by 

reporting on our efforts in developing a complete media pipeline 

that is capable, in real-time, of efficiently transmitting live-

captured mesh objects between remote locations. Results show 

that our solution outperforms existing mechanisms, when 

transmitting high quality 3D geometry representations. 

3D tele-immersion has been studied in the past for a variety of 

application areas such as creative dancing, cyber-archeology, 

medicine, and gaming [1][2][3][4]. While high-resolution video 

conferencing systems may facilitate basic interaction between 
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Figure 1 Our media pipeline enables the transmission, in real-

time, of live-reconstructed meshes for 3D tele-immersion. 
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distributed sites, they generally fail in providing users a natural 

way for eye contact (gaze), when more than two sites are 

involved, and they do not truly immerse users in the same virtual 

environment. Over the years, some attempts have been made to 

address these issues by using larger displays, multiple cameras, 

gaze correction mechanisms, and expensive fully furnished 

environments. [5]. Instead, a system like ours, that allows the 

transmission of live-captured 3D representations (such as a 

triangle mesh) of the participants and their body and facial 

expressions, will allow realistic immersion and interaction.  

Capturing highly realistic representations of people in real-time 

was generally only possible at professional media studios using 

arrays of expensive stereo cameras and hardware for real-time 

depth estimation based on stereo correspondence. The recent 

commercial success of Microsoft’s Kinect, which provides 

reasonable depth estimates, has brought inexpensive range 

cameras to the market (for less than $200). By deploying multiple 

Kinects from different angles, reasonable 360-degree geometric 

representations of people can be reconstructed (see Figure 1). 

Moreover, the wide availability of general-purpose GPU and 

parallel computing, allows a speed optimization of the 3D 

reconstruction process to real-time [6][7].  Finally, modern 

graphics cards and displays allow multi-view and auto-

stereoscopic rendering of such 3D reconstructions.  

Looking ahead in the future, when current challenges regarding 

calibration and synchronization of the different Kinects are 

solved, we believe that 3D tele-immersion will become integrated 

into social network experiences (similar to current Google’s 

Hangout video conferencing). Still, in order to enable real-time 

transmission of such geometric representations over the Internet, 

efficient compression and streaming mechanisms that can operate 

in a realistic environment will be needed. For regular video, such 

mechanisms that can operate in real-time are already available: 

H.263+ and H.264 compression and network streaming profiles 

based on RTP/RTSP. However, if the captured human 

representation for 3D tele-immersion is geometry-based (e.g., 

triangle mesh), existing codecs and packetisation schemes cannot 

be used, as they do not support this format. There is a need for a 

compression and streaming scheme geared towards live-captured 

geometries, which is the main contribution of this paper. 

Over the years, various schemes for geometry-based compression 

have been developed, mostly aimed at efficient rendering. 

Transmission schemes and middleware solutions for real-time 

streaming over lossy networks have been developed as well, 

generally dealing with remote downloading of stored objects [17 

18 19]. None of these approaches handle the critical real-time 

requirement as imposed by live-captured triangle mesh for 3D 

Tele-immersion. This paper introduces the particular requirements 

of this new generation of 3D tele-immersion systems, it describes 

a working prototype of the transmission engine and its 

architecture, and it reports on a set of experiments, both with the 

integrated prototype and with offline collected data captured with 

five Kinects.  

This paper is structured as follows. Section 3 overviews the 

related work regarding existing 3D tele-immersion systems, mesh 

geometry compression algorithms, and mesh geometry 

transmission solutions. Next, section 4 introduces the streaming 

pipeline of our 3D tele-immersion system. Section 5 presents a 

specific compression method we have designed for captured 

meshes, comparing it with some existing mesh compression 

schemes. Section 6 describes the proposed transmission scheme 

based on a rateless code, reporting results that highlight the 

benefits of this approach over TCP transmission. Section 7 

presents our 3D Tele-immersion system, highlighting the 

performance of the overall system.  We discuss the implications 

of our work in section 8. The paper concludes with section 9. The 

next section motivates our work and discusses our contributions. 

2. MOTIVATION AND RESEARCH 

QUESTION 
Real-time streaming of live-captured video is common in video 

conferencing systems, but streaming of captured triangle 

geometry objects has rarely been considered in the past. There are 

various reasons why we consider efficient real-time transmission 

of live-captured triangle geometry essential for the next-

generation of 3D tele-immersion systems. First, modern graphics 

cards can take advantage of advanced rendering methods, such as 

multiple views for stereo and multi-stereoscopic or free-viewpoint 

rendering. Second, it allows for easy integration with virtual 

worlds, where triangle mesh representations are common. Finally, 

novel application areas can emerge such as natural interactions 

between people in real and virtual worlds. Geometry Streaming 

solutions can be also beneficial for applications like camera or 

terrain surveillance, where geometric data is live-captured and 

needs to be available in real-time to observers or automatic 

engines. In this paper we are concerned with the 3D tele-

immersion application for interactive purpose. 

In particular, this paper aims to answer the following research 

question: 

What is an efficient way to transmit real-time live-captured 

triangle mesh geometry in real-time in the internet, as needed for 

3D Tele-immersion? 

Our main contribution is the design and development of a 

streaming module that takes into account the specific 

requirements for streaming captured meshes. The requirements 

are the following: 

Support a full 3D triangle mesh representation: the engine should 

support streaming of the common 3D triangle mesh 

representation. That is, a list of points with properties (coordinate, 

normal, colour) and a list of faces indexing these points, resulting 

into a surface in the 3D space.   

Low end-to-end Latency is generally considered the most 

important factor in 3D Tele-immersion, as the pipeline consists of 

bandwidth and computation savvy operations. For this paper we 

aim to provide an end-to-end transmission latency below 300 ms, 

based on video conferencing requirements. 

Flexible I/O representation: the data should efficiently flow from 

the capturing and reconstruction blocks, via the streaming engine, 

to the renderers without blocking. To allow for minimum pipeline 

delay and possible synchronization between different streams a 

flexible I/O scheme is needed 

Adaptability: the mechanism should be able to adapt to changing 

network conditions such as bandwidth, possibly reducing the 

quality of the captured stream. Some rate/complexity control is 

desired.  

Robustness to packet loss as it occurs in congested networks is 

desired. Some quality degradation may happen, but it should  be 

possible to reconstruct the triangle mesh at the receiver in case of 

packet loss. 

Bandwidth: the triangle mesh stream should not consume too 

much bandwidth; some form of compression is desired.  



No a priori information of the geometric properties of the objects 

can be assumed. The application should be able to stream any 

triangle mesh that is currently captured. Similar to video 

conferencing, any object that is captured should be streamed. This 

means that no pre-stored avatars or models can be transmitted as 

placeholders.   

Real time Live-captured triangle meshes should be supported. 

Contrary to live captured video, where frames generally consist of 

a fixed number of points (320x240, 640x480), captured triangle 

mesh frames can have different numbers of points i.e. no such 

point (pixel) correspondence between frames can be made. This 

means that the triangle meshes have to be transmitted as a 

sequence of static meshes.  To our knowledge, a mechanism to 

estimate this correspondence between captured points in real time 

does not exist. 

Contribution: this paper presents a component that can 

efficiently stream in real-time triangle mesh geometry, that is live 

captured and reconstructed. The component has two main 

subcomponents: encoding and transmission. First, we introduce an 

encoding mechanism that reduces the size of the reconstructed 

mesh to values similar to those obtained with a state of the art 

TFAN MPEG encoder, but over 10 times faster. This meets our 

requirements on latency and bandwidth. Second, we provide a 

transmission scheme that uses a rateless code, meeting the 

requirements of robustness, latency and adaptability to changing 

network conditions.  

3.  RELATED WORK 

3.1 3D Tele-immersion 
A 3D tele-immersion application presents great challenges to 

capturing, streaming/networking and rendering technologies. The 

first 3D tele-immersive research dates back to the beginning of 

this millennium. The National Tele-Immersive initiative NTII, a 

consortium of American Universities and industries, demonstrated 

a first 3D immersive system that captured 3D point cloud 

representations and stereo video, and rendered using stereoscopic 

displays [9]. This system allowed immersive interaction between 

sites but it was not optimized for efficient transmission, as the 

focus was on rendering and reconstruction. The system used the 

Internet2 and TCP/IP to send the point cloud representations and 

the stereo video uncompressed. In this system, video streams were 

sent from different machines to a cluster. As these different 

TCP/IP streams often utilize a common link, the TCP bandwidth 

congestion mechanism made such streams to compete, degrading 

the overall quality. Ott and Patel [10] developed a coordination 

protocol that allowed, in the gateway, coordination between the 

streams to alleviate this problem. At the University of Illinois, 

Yang et al. looked at the case of streaming multiple live-captured 

3D videos in an overlay with 4-9 sites on the Internet2, leading to 

a large amount video traffic [11]. By adapting the forwarding 

mechanisms, in the overlay network, to the view of the specific 

recipient user, they achieved bandwidth gains by timely dropping 

irrelevant streams. Huang et al. looked at a similar problem, also 

taking into account the synchronization/skew level between the 

streams. They developed a scheme, called sync-cast [12], that 

allowed video streams, in an overlay with multiple immersive 

sites, to be forwarded based on bandwidth, synchronization and 

latency requirements. Vasuvedan et al. proposed a 3D tele-

immersion system for capturing and rendering. This system can in 

real-time reconstruct humans in the scene with high level of detail 

[7]. They used 12 clusters of 4 DragonFly cameras that reproduce 

3D colour plus depth images of a human. On this depth image, 

triangular meshing is applied. The main advantages of this 

technique are that by interpolating points a more efficient 

representation of the depth image is possible, and that by 

changing the size of the triangles it is possible to adapt the level of 

detail. Wu et al. developed a streaming engine that exploits the 

aspect of this representation, [8], where the representation is 

referred to as colour plus depth and level of detail (CZLoD). In 

this study they first investigated human perception, by testing a 

set of samples generated with a stimulus engine. The authors 

found the just noticeable degradation and just acceptable 

degradation levels, and subsequently used these for the dynamic 

adaptation of the CZLoD, depending on network and user 

conditions. With this engine, the real-time CZLoD can be adapted 

to match user perception for the given available network 

bandwidth and user conditions. This system represents the current 

state of the art in 3D tele-immersive systems. Note that the 

CZLoD representation is different from the full 3D polygonal 

mesh that we deal with in this paper. The CZLoD representation is 

a triangulation on a depth image, while a polygonal mesh is a 

triangulation in a full 3D space.  

3.2 Compression of Triangle Meshes 
Peng [13] provides a survey of a number of compression methods 

up to 2005. Some common terms in mesh compression are single 

rate encoding, which refers to coding at one quality level; 

progressive encoding, which allows lower quality reconstructions 

if part of the data is received. Mesh coding can be connectivity 

driven (encodes indices first) or geometry driven (encodes vertex 

data first). Generally, geometry encoding can be lossy, but 

connectivity coding should be lossless to maintain the original 

topology. The single rate encoder that achieves the highest 

compression rate is the Touma and Gotsman encoder [22]. 

Compressed progressive mesh [24] is a progressive compression 

scheme that reconstructs a mesh by successive vertex splits and 

allows both more coarse and more detailed views. Streaming 

compression, as proposed by Isenburg et al. [14], can work on 

small parts of the mesh, making it more memory efficient and 

faster (large meshes may be too large to fit the main memory). 

Currently, a standardization activity of 3D graphics as geometry 

meshes is ongoing in the Motion Picture Experts Group (MPEG): 

Scalable complexity 3D Mesh Coding (SC3DMC). The standard 

provides 3 types of encoders with various settings in complexity 

to allow a tradeoff between decoding speed and compression ratio 

[15 16].  The most sophisticated coder, the triangle fan encoder, is 

reported to achieve a compression rate close to the Touma and 

Gotsman encoder. 

Many other mesh compression methods that exploit various 

topological properties have been developed. They offer the 

compression performance needed to reduce the large data 

streaming rate required in 3D tele-immersion. Unfortunately these 

encoding mechanisms have not been explicitly designed for real-

time encoding, transmission and robustness to packet losses 

needed for 3D Tele-immersion. A loss of connectivity data, for 

example, could destroy the entire topology [17]. 

3.3 Transmission of Triangle Mesh Geometry 
Robust real-time transmission of compressed mesh geometry over 

lossy networks is challenging.  Regib and Altunbasak [17] 

propose 3TP, a streaming protocol that sends parts of the 

compressed data over TCP and other parts over UDP. Given an 

allowed acceptable degradation of the mesh, 3TP selects a 

combination of packets to be sent over TCP and UDP. This 

selection is then optimized for reducing the transmission delay 

given the current level of packet loss. 3TP gives the user a lower 



download time, but extensive offline preprocessing of the object is 

required to do the selection. This makes it unsuitable for the 

interactive streaming case, where geometry is captured, encoded 

and transmitted live. Another somewhat similar but more generic 

approach, by Li et al, is a middleware that allows streaming of 

various different compressed mesh representations [18]. The 

essence of this approach is that subsets of the representation can 

be sent reliably or unreliably based on the type of data (i.e. 

geometry/connectivity), the loss rate and the type of user 

environment (renderer, terminal type). This approach works for 

any type of mesh representations, as values are calculated offline 

using the general distortion measure for mesh geometry Hausdorff 

distance, described in [27]. This makes it more generic, but less 

applicable for live captured data due to the complex pre-

processing step. Cheng et al. studied dependencies between data, 

when streaming compressed progressive mesh (CPM) based 

representations [19]. They found that packet loss in the initial 

phase, when reconstructing from a coarse mesh with vertex split 

operations, blocks the decoding process. When a vertex split 

packet is lost, many other packets cannot be decoded until the 

packet is retransmitted and successfully received. Cheng et al. do 

not solve this problem, but model the effect mathematically. This 

mathematical model of the dependencies in the data (using a 

graph representation) is used to find an optimal packet scheduling 

strategy (order of sending packets). Experimental evaluation 

shows that they are able to reduce the delays (by minimizing long 

term dependencies between packets). 

In our work, we develop a 3D tele-immersion system that streams 

live captured mesh geometry. Existing compression and streaming 

methods are not geared towards the requirements of such 

application.  

 

Figure 2 3D representations, from image based to geometry 

based, from [16] 

 

Figure 3 Our 3D tele-immersion media pipeline realized(left 

sender) receiver (left) 

4. 3D IMMERSIVE MEDIA PIPELINE 

4.1 3D Representation 
3D video can be interpreted in different ways, such as the 3D 

stereo video in the cinema with an artificial depth perception by 

rendering a left and right image, or the free-view video that allows 

viewpoint navigation. The work in [16], which we find 

particularly useful, categorizes different representations on a 

spectrum between image-based methods and geometry-based 

methods (Figure 2). Examples of geometry-based representations 

include triangle meshes and point clouds. Image-Based methods, 

on the other hand, are similar to traditional video, since they use 

multiple separate (possibly) interpolated views. Traditionally, 

geometry-based methods have been restricted to games and virtual 

worlds.  

4.2 Media Pipeline 
Figure 3 shows our media pipeline at the sender site. Further 

details about the individual components of the system, and reports 

of comparison to existing mechanisms, are provided in the next 

two sections. First, humans are captured in real-time. Different 

media are captured, audio, motion and visual. In this paper we 

focus on the visual pipeline for a mesh geometry representation of 

a human. As humans interact in real-time, low delay is required. 

After capturing the representation has to be encoded using an 

efficient compression method. Subsequently, streams and packets 

are sent over the network. The right side of Figure 3 shows the 

streaming module at the receiver site. The received packets are 

first buffered and synchronized.  Subsequently, the re-

construction of the stream takes place and the object is decoded 

and rendered in real-time. 

5. FAST COMPRESSION 
Compression is one of the key methods to relieve the high 

bandwidth demands. As mentioned in Section 2, subsequently 

captured meshes can have a different number of independent 

points and faces. Due to the lack of such a direct relationship 

between the frames, we investigate static mesh codecs to encode 

each mesh independently, without inter-frame coding.  

 First, we qualitatively compare the different static mesh 

compression mechanism identified in the literature for their 

properties and applicability. Then, we present our own solution to 

the problem, specifically addressing the requirements for enabling 

a 3D tele-immersive system. We independently assess the 

performance of our method and compare it with MPEG SC3DMC 

Codecs. 

5.1 Qualitative Comparison Existing Mesh 

Compression Methods for 3D Tele-Immersion 
In this section we qualitatively compare compression methods 

based on the following criteria:  C Compression Rate, E Encoding 

speed, D decoding speed, SC scalable complexity, L tolerance to 

loss and P progressive transmission, T shape topology 

independence (if the compression method is geared to a specific 

triangle mesh topology). We rate them from 1 (bad) to 5 (very 

good). We use these criteria to make a selection of mesh encoders 

that are suitable for real-time streaming.  

Touma and Gotsman propose an encoder that encodes at high 

rates, intended for semi-regular meshes. In the literature, this 

codec is considered the best in terms of compression rate. This 

encoder is not optimized for losses, progressive transmission, or 

real-time encoding. Gumhold and Strasser propose a fast (real-

time) compression and decompression technique that codes at 



high compression rates. We investigated this approach further, 

and found a specific disadvantage. The data structure that is fed to 

the algorithm (that makes it run in linear time) is not a typical list 

of points and faces, but a data structure that allows random access 

to a vertex indexed based on an edge. Creating such a data 

structure from the captured mesh representation would minimize 

the reported speedup advantages. We made an attempt to obtain 

such data structure by using algorithms available in the C++ 

standard library.  Specifically, we created a map with pairs of 

points (edges) to index the other vertices in a typical captured 

mesh. This already resulted in delays of over 200 ms on an Intel i7 

machine compiled with a 64-bit Visual Studio Compiler in release 

mode.  The three SC3DMC encoders standardized in MPEG-4 

SC3DMC (2009) have been developed for fast decoding and have 

many coding options that provide scalable complexity. The 

QBCR and SVA [16] are faster, but simpler codecs. The TFAN 

[15] is a more complex single rate encoder, which allows fast 

decompression for rendering and achieves compression rates near 

to the Touma and Gotsman encoder. Up to now, MPEG or IETF 

have not published any scheme for transmission using these 

codecs over the Internet. However, their speed may make them 

useful for 3D tele-immersion application. Khodakovsky et al. [26] 

developed a progressive wavelet-based  coder. The advantage of 

this approach is that reconstructions are possible, even with 

partially received data. A disadvantage is that it works only for 

semi-regular meshes. The current implementation is available, but 

currently works with ASCII-based files as an input, introducing 

extra delays in the encoding. Compressed progressive Mesh 

(CPM) presented in [24] was used in many studies on 

transmission of geometries. It offers progressive transmission, but 

losses of packets can delay the decoding process as studied in 

[19]. Apart from that, this codec is not specifically optimized for 

encoding speed. The approach of Topological surgery was 

standardized in MPEG 3D Mesh coding (MPEG3DMC) [25], but 

in practice it has not been used much mainly due to its slow 

encoding speed and on its dependency on MPEG BIFS. Also, we 

compressed some meshes with an open source compression 

mechanism, OpenCTM1. This software employs entropy coding 

and quantization to compress meshes, instead of state of the art 

compression techniques geared to 3D meshes. This codec 

introduces a delay of over 1s when applied to the modules 

captured in our system and did not achieve rates comparable to 

other methods that are described in the scientific literature.  

Table 1 Qualitative Comparison of Triangle Mesh 

Compression methods 

Encoder Name C E D SC L P T 

Touma and Gotsman [23] 5 1 3 3 1 1 2 

Gumhold and Strasser [24] 5 3 5 2 2 1 3 

TFAN (SC3DMC) [16] 5 2 4 3 2 1 2 

SVA (3DMC) [17] 3 4 4 4 3 2 2 

QBCR (3DMC) [17] 2 5 5 3 3 2 4 

Khodakovsky et al.  [30] 5 2 4 5 4 5 1 

Pajarola and Rossignac [25] 4 3 5 4 1 5 2 

Taubin and Rossignac 

(3DMC) [26] 

4 2 2 1 1 1 2 

 

                                                                 

1 www.openctm.org 

The 3 MPEG-4 SC3DMC encoders with different complexities 

and options provide good compression rates and fast decoding. 

We chose to integrate them with our system for further evaluation. 

The software, available on mymultimediaworld.com also works 

with ASCII (text based) formats. The classes provided by this 

codecs can also be used to directly encode the binary incoming 

indexed face set, the common representation of polygon a Mesh. 

To achieve this, we wrote an extra C++ class to interface this 

codec, integrating it with our 3D tele-immersive system.  

5.2 Fast Compression Heuristic for Captured 

Meshes 
None of the current solutions for 3D triangle mesh compression 

are specifically geared to our envisioned 3D tele-immersion use 

case. In order to address this issue, we developed our own fast  

local compression method that is capable of real-time encoding 

and decoding and that meets the requirements introduced in 

Section 2. Unlike generic mesh compression methods, this 

algorithm takes advantage of the properties, present in meshes 

reconstructed from multiple depth images. The two most 

important observations exploited are: 

1. Subsequent coordinates in the list of vertices are co-located, we 

exploit this with differential coding and local quantization. 

2. The face indices resulting from triangulation on multiple depth 

images are highly structured and show repetitions that can be 

exploited. 

Our algorithm for compressing the geometry (points) is presented 

as Algorithm 1, the connectivity compression method in 

Algorithm 2. The code is provided as pseudo-code in Tables 2, 3 

and 4. Algorithm 1 takes the mesh geometry (a list of points) from 

the capturing component and processes it piece by piece. The 

algorithm allocates storage for the expected number of 

compressed blocks stored in coded_data. In the while iteration the 

geometric data points are processed into compressed blocks of an 

approximately constant size of about 1436 bytes. Algorithm 1b 

illustrates how the individual blocks are processed. For each local 

block of data, first the maximum difference in its range is 

computed with the method compute max diffs per vertex value(). 

Based on the local maximum difference per subvalue  

quantization vectors are computed. These vectors are used to 

quantize the rest of the differences between the specific subvalues 

in the block. A non-linear base quantizer was adopted with a 

higher resolution in the lower values, as experimentation showed 

that this kept more specific details in the mesh. In line 3 in 

algorithm 1a, based on the computed maxima, the number of 

vertices for each block is computed.  By default each value is 

assigned 4 bits, but 0 bits will be assigned if certain subvalues do 

not change. As the blocks maintain about equal size, the number 

of vertices in the packet differs, based on this allocation (this is 

calculated by computing n_vertices for required 

datablock_size(P)). Subsequently, in the for loop in Algorithm 1a, 

the differences are encoded by quantizing them with the local 

quantizer (that was computed from the maxima). The values are 

stored in the block coded_data. The starting coordinates, local 

maxima and the number of vertices are also stored in the 

compressed block (data structure c_block),  as they are needed in 

the decoding process. The index value is currently also added, in 

the future this could allow more flexible processing such as 

parallel or on the fly execution using GPU’s. Currently the blocks 

are encoded and decoded in linear fashion. 

 

 



ALGORITHM 1a      Geometry Compression                                                     

INPUT:   P     

 

Block of floating point 

geometric data: nV vertices 

with w floats of data per 

vertex 

OUTPUT:    c_data,    N                           N blocks of piecewise 

compressed data (c_data) 

COMPRESS_GEOMETRY P, nV, w: 

c_blocks  = c_block[max_number_of_blocks] 

nr_vertices_processed = 0  

nr_blocks = 0  

pos = 0 

While  (nr_points_processed < nV)   

          compress_geometry_block(P.next()  c_block.next())  

          nr_points_processed += c_block->nr_vertices_in_block 

          nr_blocks++ 

End 

return   c_data, nr_blocks              

ALGORITHM 1b   

 COMPRESS_GEOMETRY_BLOCK P, &block : 

INPUT: P, block 

 

P: block of floating point values 

representing local points of the 

mesh ,  

Block: an empty struct c_block 

representing a compressed block 

of data (to be filled) 

OUTPUT:    n_vertices,    

block                           

The number of vertices encoded in 

the block, the filled block of 

compressed data 

Vector max_diffs = compute_max_diffs_per_vertex_value() 

q_vec = compute_quantization_steps(max_diffs,  w_vec) 

nr_vertices=compute_n_vertices_for_required_datablock_size(P)       

coded_data[w][n_vertices]  

For(j=1….w) 

    prev[j] =P[j][0] 

        For(i=1…..nV){ 

             diff =  P[j][i]- prev[j] 

             cindex == qvec.find_index_closest_to( diff) 

             coded_data[j][i]  = cindex 

             prev[j] =    qvec[cindex] +  prev[j]; 

       End 

End 

Block->start_coords[0…w] = P[0…w][0] 

Block-> max_v[0…w] = max_diffs[0…w] 

Block-> nr_vertices = nr_vertices 

Return n_vertices 

DATASTRUCTURE C_BLOCK 

Int start_index,  int nr_vertices;   

 vector max_v    ,vector start_coords  

byte[] coded_data 

Table 2 Algorithm 1 Geometry Compression 

Algorithm 2 handles the connectivity compression. The mesh 

reconstruction process introduces repetition patterns in the 

connectivity data. The patterns were repeating differences [+a,+a 

….], alternating differences [+a,+b,+a,+b] or [+a,+a,+b,+b.]  As 

such, patterns can occur many times, actively searching for them 

and encoding them as a coded sequence which we call a run 

obtains a large reduction in connectivity data size. Algorithm 2 

starts by initializing three vectors to store the differences between 

points of subsequent faces. For example if face 1 <a,b,c>  and 

face 2 <d,e,f>, then these differences will be d-e, e-b and f-c. In 

the beginning of Algorithm 2, we run over the entire list of faces 

to find these patterns (find_run_pattern) and store them in 

pattern_runs.  Subsequently, in the for loop in Algorithm 2, either 

a difference between values in consecutive faces is stored in 

T_Coded, or, if a pattern_run was previously found, this pattern is 

added to T_Coded. Specifically, this is done by adding an escape 

value to the T_coded vector and the sequence of values 

representing the pattern_run (see datastructure pattern_run). The 

loop index i is then incremented with the length represented in the 

pattern run. In this way, the indices are either stored as 16 bit 

differences, or encoded in a pattern run. Specific entropy coding 

such as Huffman and Entropy encoding are avoided, so no extra 

latency is introduced. In practice, over 90% of the connectivity 

information is stored in runs. 

Algorithm 2b represents the pattern search algorithm. In our case, 

we store repeating differences, and when a pattern is broken that 

has been repeated more than 32 times, we store the pattern as a 

pattern run. These patterns are then assessed in Algorithm 2. 

ALGORITHM 2       
 

Connectivity Compression                                                     

 

INPUT:   T , nT    

 

Array of 3 by nT representing the 

Triangles 

OUTPUT:    T_coded 3 vectors with coded geometry data 

COMPRESS_CONNECTIVITY T, nT 

T_coded[3][]   

pattern_runs[]  = find_run_patterns(T,nT) 

For( j=0….3) 

      For(int i=0…nT) 

 d_[j] =  T[j][i] – T[j][i-1]; 
               T_coded[j] .append(d_[j] ); 

               if( pattern_run.colum == j AND pattern_run.start ==i) 

                        T_coded [j].insert_pattern_run(pattern_run) 

                        pattern_run = pattern_run.next() 

                        i.increment(pattern_run.length) 

               End 
       End 

End 

return   c_data, nr_blocks            

ALGORITHM 2a FIND_RUN_PATTERNS  

INPUT:           T[w][nT] , nT    Array of 3 by nT representing the 

Triangles 

OUTPUT:         run_d[3] 3 vectors with pattern run data 

structures 

run_d[3][]  

diffs[4] 

run_counter[nr_modes] 

first_triangle[3] = T[0…2][0] 

For(i=2; ……nT ) 

          diffs = compute_local_diffs 

           if(pattern = find_pattern()) 

               run_counter.increment() 

           if(pattern broken and run_counter > thresh) 

              patterns.add(pattern); 

End  

DATASTRUCTURE PATTERN_RUN 

Int mode, length, diff1,diff2,start,value; 

Table 3 Algorithm 2 Connectivity Compression 

The decompression algorithm is provided as pseudo-code in Table 

4. The blocks of compressed geometry data, represented as 

c_block datastructures are all subsequently processed by 

algorithm 3a. Algorithm 3a re-computes the local quantization 

vector of the differences based on the max_v field. Then, based on 

start_coords the differential decoding of the geometric data is 

performed. The second decompression step involves the decoding 



of the connectivity data. The first values of T_Coded represent the 

first face, then based on this face differential reconstruction of the 

different face columns is performed. When an escape value is 

found in T_coded for a run, the run is decoded into respective 

column of the faces. By processing all the values in T_Coded, the 

complete connectivity is reconstructed.  

ALGORITHM 3       De-Compression                                                     

INPUT:   c_data[N] 

T_coded    

 

N coded data c_blocks from 

algorithm 1 and the vectors T_coded 

obtained from algorithm 2 

OUTPUT:    P[w][nV], 

T[3][], nT 

The geometry data: nV vertices of w 

floats each, the number of faces nT 

DECOMPRESS_MESH c_data, T 

P[][] 

for(block in c_data) 

     P.append(decode_c_data_block(block)) 

For(j=0…3) 

    T[j][0] = T_coded[j][0] 

    for(i=1…… nT, k=1…..nT){ 

        if(T_coded[j][k] == run_start ) 

                T[j][i…i+runlength] = decode_run(T_coded[j][i]) 

                i.increment(runlength); 

                j.incremenent( 6); 

         Else{ 

              T[j][i] =  T[j][i-1] + T_coded[j][i]; 

        End 

End          

ALGORITHM 3a      Decode c_data_block 

INPUT:            c_block A coded block of geometric data 

(a struct of c_data) 

OUTPUT:         P[w][] Block of points from the decoded 

mesh of w floats per vertex 

Prev[0…w] = c_block-> start_coords[0….w] 

Compute_local_quantization_bounds( c_block->max_v) 

for(i=0…..w) 

   prev = c_block->start_coords[i] 

   for(j=0……c_block->n_vert) 

       P[i][j] = prev + q_diff( c_block->coded_data[i][j]) 

       Prev = P[i][j] 

   End 

End 

Table 4 Algorithm 3 Decompression Algorithm 

5.3 Experimental Results 
In this section we evaluate the performance of our method with 

live captured data. Figures 4 to 11 show the results in terms of 

compression size, coding latency and distortion.  

Our scheme was implemented in C++ using Visual studio and 

compiled using a 64 bit compiler. The tests ran on an Asus laptop 

(PRO64J) with a first generation (1.6 Ghz) mobile Intel i7 

processor with 4GB of ram and Windows 7 home edition. The 

MPEG SC3DMC Codecs were compiled from source code with 

the same compiler and ran in the same environment. The tests 

were run offline with previously captured data stored in files. All 

files are first completely loaded into memory before the 

compression routine is started. The running times are recorded 

with os wall clock times in boost C++ that provide a wall clock 

time in Windows 7 with a resolution around 366 ns. 

The first set of experiments (Figures 4-7) show the performance 

when the capturing device is a single Kinect and the capturing 

mechanism is tuned to capture objects within a 130 cm range. 

This represents a situation where a user is behind a pc with a 

Kinect on it. We captured high-quality representations for this 

dataset with on average 72,855 vertices per frame and 143,302 

faces. Each vertex points contains 9 floating point values, 3 for 

coordinates, normal and colors each. The raw frames are therefore 

about 4.3 MB each.  As shown in Figure 4, the size is reduced by 

more than a factor 10, close to the performance of triangle mesh 

Encoder TFAN (tuned with 8 bit quantization and differential 

encoding).  Figure 5 shows a qualitative comparison between the 

reconstructed frames from the different coding mechanisms. This 

qualitative comparison is based on the Haussdorf distance (rms) 

and measured with a tool developed in [31]. The values measured 

represent the root mean square distance between the original and 

the reconstructed surface. The models decoded with our scheme 

have slightly less distortion and in theory are slightly better 

reconstructions. Note that the distortion differences (Haussdorf 

distance rms) between the models of 0.0004 are not significant 

(the reconstructions are of comparable quality). We chose the 

quantization values such that they allow a fair comparison 

between different algorithms (operating at similar quality). As we 

have lower distortion, it is fair to compare speed and size 

(assuming the quality is at least as good from human perception). 

The main gain of our heuristic is in the speedup. We can encode 

the high quality representation in about 70 ms, and decode it 

consistently below 10 ms. 

 

Figure 4 Compression size of live captured data frames with 

different methods (130 cm 1 Kinect) (Kb) 

 

Figure 5 Distortion quality of decompressed representation -  

Hausdorff Distance (rms) - to original frame (130 cm 1 Kinect 

data) 

This result implies a speedup of over 100% compared to the state 

of the art MPEG 3DGraphics encoder at only a slightly lower 

compression gain. Most gain is achieved in compressing the 

connectivity data, of which in most cases over 90% is encoded in 

runs. Figures 9-12 compare the different possible setups and 
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encoding solutions. In this case we compare setups with 5 Kinects 

and 1 Kinect at both high and low quality at a bit longer distance 

(300 cm), representing a more console like or living room like 

experience. The high quality 5 Kinect representation is the most 

challenging, as the frames consist of about 253,000 vertices and 

487,500 faces on average. Our heuristic is able to process such a 

frame into a 1 MB block in on average 160ms. Further 

parallelization would allow transportation of such highly realistic 

captured realistic representations in real-time. Our heuristic 

heavily outperforms other methods on the speed requirement that 

is critical for our application. 

 

Figure 6 Encoding time with different methods [ms] (130 cm 

one kinect) 

 

Figure 7 Decoding time with different methods [ms] (130 cm 

one Kinect) 

 

Figure 8 Low Res (~253K vertices) Data with 5 Kinects (300 

cm) 

 

Figure 9 High Res (~72K vertices) Data with 5 Kinects (300 

cm) (size in kb time in ms) 

 

Figure 10 Low Res Data (17K vertices) with One Kinect 

(300cm) 

 

Figure 11 High Res (~70K vertices)Data With 1 Kinect (300 

cm) 

5.4 Discussion 
The component developed in this section meets the requirements 

for 3D triangle mesh based tele-immersion. First, it handles in 

real-time full geometric input frames of up to 100,000 vertices. It 

avoids (except for once in the connectivity encoding) global 

searches/re-orderings. Moreover, the way the data is handled in 

small consecutive independent blocks allows parallelization and is 

computation/memory efficient. These small blocks also enable 

more flexible I/O. For example, in future scenarios meshes might 

be only partially sent/compressed or reconstructed. Also, in terms 

of bandwidth it performs similarly to the TFAN codec on the live 

captured meshes reconstructed in our capturing system.  

The development of this 3D mesh compression mechanism, which 

works well with capturing systems, is a key step towards enabling 

the 3D tele-immersion system based on geometry. Local 

operation, real-time encoding and decoding are desired properties 

of such mechanisms.  

6. REAL-TIME TRANSMISSION 
Generally, interactive communication over lossy networks has 

been tackled with the possibility of omitting information at the 

receiver. Modern video codecs implement the possibility of 

decoding at reduced resolution or frame rate, should not all the 

information arrive at destination within a target end-to-end delay. 

Units that can be dropped are generally small and have poor 

impact on the continuity of the service. Triangle mesh 

compression has not been designed to be resilient to information 

losses. Thus the loss of a packet can waste a lot of resources since: 

1. The packet needs to be retransmitted to make sure the mesh 

can be decoded, yielding to uncontrollable delays (e.g., 

TCP) 

2. If the frame is skipped, bandwidth is wasted for information 

that is not decoded. 

In our tele-immersive system, we implemented a rateless code to 

achieve minimal end-to-end delay and protection against packet 
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losses.  In this section we introduce the concept of rateless coding 

and we compare it to resilient transmission via TCP, based on a 

number of real experiments, and show its favorable properties for 

geometry transmission and 3D tele-immersion.  

6.1 Rateless Coding  
Random Linear Coding aims to achieve packet loss protection 

with near optimal rate and quick adaptation to the network 

conditions. The idea of rateless and fountain codes is that any 

amount of packets can be generated at the sender. The first 

practical Random linear codes were first proposed in [20].  

Currently, codes like Raptor and RaptorQ have been proposed as 

standards by IETF [29][30]. The benefits include linear encoding 

and decoding time of the data (compared to quadratic time in 

Reed Solomon codes). The codes are called rateless, as the 

amount of data generated is not fixed, in case of increased packet 

loss in the network, the data generated can be increased for extra 

protection. This constitutes one of the main advantages compared 

to traditional fixed rate FEC codes such as Reed Solomon codes.  

Additionally rateless codes also reduce the end-to-end delay, 

because they do not need retransmission of information. The 

receiver then only has to receive a set of packets to make sure the 

reconstruction of the frame is possible. A symbol based version of 

rateless codes, more similar to our proposed technique, has been 

also adopted in the field of network coding [31, 32] to allow 

receivers to decode from packets recursively encoded by different 

nodes. 

6.2 Implementation 
The data stream is divided in units that are encoded together 

(similar to NAL units in the H.264/AVC standard), e.g., frames 

containing the triangular mesh at a certain instant. We further 

divide these segments in generations and datablocks (See Figure 

12). We adopt packet-based random linear coding on a Galois 

Field (GF). Blocks belonging to a generation are always meant to 

be coded with blocks from the same generation.  

 

 

Figure 12: Arrangement of blocks for rateless coding 

Each block is a sequence of codewords, each codeword made of  

  bits each (typically 8 bits, or a multiple of 8 bits), so that 

encoding and decoding operations are performed in an algebra 

over a Galois Field (GF) of size   . A new packet is generated by 

linearly combining the   source blocks of the current generation 

with random coefficients           . A codeword        from a 

new coded block     
                       , of generation   can 

be expressed as: 

       ∑        
    

   ,             (1) 

where     
   

 is the  -th codeword of the  -th block in generation  . 

 

Figure 13: Example of rateless coding and decoding from 

linearly independent subsets of packets 

The coefficients of the linear combination are embedded in the 

packet header, to make sure the receiver knows which specific 

linear combination has been received. Decoding operations are 

also performed between blocks labelled with the same generation. 

As soon as enough packets are received for a generation, the 

coefficients are used to build a     linear system that allows 

decoding and recovering the data. Figure 13 shows a simple 

example of how packets randomly-coded from 2 two source 

blocks are decoded from any linearly independent subset of 

blocks. In order to reduce the decoding computational load, we 

construct a composite matrix of data, and coefficients of the 

incoming packets and perform Gaussian elimination each time a 

new packet is received. This spreads the computational cost over 

time and drastically reduces the decoding complexity. Such 

complexity can be still reduced by reducing the dimension of the 

coding space. These factors need to be properly considered: 

1. Loss protection (Larger coding diversity). 

2. Decoding complexity (Smaller linear system). 

Properly balancing the coding space between big linear systems 

(more coding diversity, more decoding complexity) and small 

systems (less coding diversity, less complexity) allows achieving 

optimal delay performance and the required resilience against 

packet losses. 

 

Figure 14: Transmission delay of TCP and rateless coding 

varying depending on the available channel rate. 



 

Figure 15: Transmission delay of TCP and rateless coding in 

seconds, due to network delays. 

 

Figure 16: Transmission delay of TCP and rateless coding in 

seconds, due to packet losses. 

6.3 Experimental Results 
In order to assess the delay performance of the rateless coding 

system we run some experiment on an experimental setup 

composed by two Intel Core i5 machines (3.10 GHz): one in 

charge of capturing, encoding and transmission and one receiving 

from the network and decoding the source data; a network 

emulator that reproduces a large variety of network conditions in 

terms of delay, bandwidth and packet loss rate is run in the 

receiving machine. Our rateless transmission system makes use of 

UDP packets and is compared with a standard self-managed and 

reliable TCP connection. The factor influencing the efficiency of 

our rateless transmission is the ratio between throughput and 

source rate, given a certain packet loss rate. This should always be 

able to sustain the source information rate. We show the delay 

performance relative to a set of experiments with limited 

bandwidth, variable delay, and packet loss rate. Delays and packet 

losses in the network affect only linearly the delay performance of 

the rateless decoding, as opposed to TCP that needs to engage 

mechanisms of recovery every time a packet is lost. The 

mechanisms of recovery are further affected by the link delay. We 

analyse now the delay introduced by the transmission and channel 

coding and decoding and the way this is affected by the network 

conditions. Figure 14 shows the introduced delay and the 

influence of the available bandwidth, with different packet loss 

and delay conditions.  Rateless coding works best when extra 

bandwidth is available, in order to cope with some additional 

overhead. Figure 15 shows the delay performance depending on 

the latency of the network, whereas Figure 16 shows again the 

transmission delay and its sensitivity to packet losses. Although in 

some ideal conditions TCP reaches optimal transmission 

performance, it suffers large transmission delay in the case of 

network delays and packet losses, making it unsuitable in realistic 

networking conditions. In the rateless system, the influence of 

network impairments is linear and controllable, often hardly 

mutable even in realistic networking conditions. The rateless code 

achieves good delay performance.  

7. 3D TELE-IMMERSIVE SYSTEM 

7.1 3D Triangle Capturing and Rendering 
The capturing component was provided by the Center for 

Research and Technology Hellas. It creates reconstructions in 

real-time (8-10fps) of humans using range images (RGB plus 

depth) captured with multiple Kinects.  An early version of the 

system is described in detail in [7]. The system is based on 

merging tessellated depth images using either zippering or 

volumetric method, which are the most common methods to 

reconstruct a triangle mesh from multiple depth images. The 

render component renders meshes in real time with shading based 

on global illumination effect using  the normal data in the vertices. 

This component was implemented with OpenGL and QT and 

provided by Institut Telecom, Paris. These components have been 

linked together to construct the immersive prototype.   

7.2 Media Pipeline Performance 
We tested the computational performance of the media pipeline in 

two different ways. Table 5 shows the results when running the 

sender and receiver on one machine (a 1.6 Ghz intel i7 laptop, 

4GB Ram). We captured meshes with one depth camera, 

reconstruct them and send them over the  local interface back and  

render them.  In the process, we recorded the time taken by 

capturing,  encoding, decoding and the rate at which frames were 

sent and received. The update frequency (refresh rate) of the 

renderer to the screen was also tested. This illustrates achievable 

frame rate in the pipeline. 

Sub-part Average [ms] Std [ms] 

Capturing 94 ms 5,3 ms 

Encoding 52 ms 3,5 ms 

Decoding 11 ms 1,1 ms 

Rendering 46 ms 4 ms 

Send-Rate 5-8 fps  

Recv-Rate 5-8 fps  

Table 5 Performance of 3D Tele-Immersive Pipeline on local 

interface (Captured Meshes with around 50,000 vertices) 

The graphs in Figure 17 and Figure 18 show the global end-to-end 

delay of the system from capturing to rendering, using both the  

traditional transmission over TCP and our rateless coding system. 

In this case two Intel Core i5 machines (3.10 GHz)  PC’s are 

connected (sender and receiver) and the network impairment 

simulator is used to generate the networking conditions between 

the machines (connected in the LAN). The delay over the link was 

10ms in all experiments, while data could be medium or high 

resolution. The medium resolution frames contained around 16-

18k vertices  (90-100 kbytes per compressed frame). The high 

resolution was around 50k vertices, (280-300 kbytes compressed 

per frame). We performed different tests, with 0% and 1% packet 

loss. Figure 17 and 18 show that the system still enables real-time 

communication in the case of packet loss/delay. The system also 

allows reconstruction and reliable transmission without 

retransmission. By employing rateless coding over UDP and fast 

mesh compression we avoid exceeding the target end-to-end delay 



for interactive applications of about 300 ms including live 

capturing and 3D rendering.   

 
Figure 17 End-to-end delay with no packet loss 

 

Figure 18 End-to-end delay with 1% packet loss 

8 Discussion 

This paper presents a prototype implementation that enables 

conferencing between remote participants, focusing on the 

compression and the transmission components. The novelty is that 

our 3D tele-immersion system is based on triangle mesh 

representations, unlike previous solutions. The triangle mesh 

representation has traditionally been supported by computer 

graphics in virtual worlds and games. Real-Time streaming of 

captured mesh data, therefore, will enable novel applications that 

can integrate real and virtual worlds. The prototype addressed 

some of the significant challenges that triangle mesh 

representation poses to the media streaming pipeline in terms of 

latency, data-volume and robustness to losses.  

The contributions can be summarized as follows: 

Encoding/Decoding: triangle mesh codecs have not been designed 

with the interactive scenario in mind. The encoding time is simply 

often too long. We developed a local method that takes advantage 

of specific properties resulting in a speed increase of ten times 

when compared to the TFAN encoder from MPEG, at comparable 

quality/rate. The method works well with the meshes produced by 

our capturing system. It takes advantage of the coherence property 

of the captured mesh. This property was also found to be present 

in reconstructed and captured meshes in [14].  Also, the relatively 

simple operations of this method and block separation allow for 

fast parallel or hardware implementations.  

Streaming: systems that efficiently transmit geometry in real-time, 

generally dealt with stored objects instead of captured 

reconstructions.  Such middleware solutions, and application-layer 

protocols [17][18][19], facilitate efficient real-time downloading 

of a mesh. This is achieved by an offline optimization step, which 

cannot be performed in geometry-based 3D tele-immersion 

systems. We do not develop a specific middleware or protocol but 

introduce an implementation of a rateless code (inter-packet fec) 

that protects each mesh frame against packet losses. Rateless code 

allows any given number of extra packets to be generated, 

depending on the amount of protection that is needed. Rateless 

codes, like Raptor and its successor RaptorQ, have both been 

proposed as standard by IETF [33][34] in 2007 and 2012, but 

have seldomly been tried for real-time streaming of geometry-

based data. Our experiments show the favorable properties of the 

rateless code, such as low end-to-end delay compared to TCP in 

case of packet loss of over 2%. Moreover, the distributed 

implementation of the packet decoder introduced a modest delay 

of 50 ms. In addition, the streaming method is generic, video 

audio and other data can also be efficiently transported in real-

time based on this code. 

3D Tele-immersion: this paper presents a prototype of a triangle 

mesh based 3D tele-immersion system. This prototype is 

integrated with state of the art capturing and rendering 

components. None of the previously presented 3DTI systems can 

capture and stream full 3D reconstructions in real-time. On top of 

that, state of the art rendering techniques can be applied such as 

global illumination. The focus in this paper was on the visual 

media pipeline, but further integration with spatial audio 

techniques such as binaural hearing are planned in the near future. 

A next integration step will include merging the received 3D mesh 

live into a virtual world adding spatial audio. 

CONCLUSION 
This paper presented a 3D tele-immersion pipeline based on 

captured mesh geometry. The demanding requirements of the 

application have been addressed in different parts of the media 

pipeline. By doing this, we extended the state of the art in 

handling mesh geometry to meet the live captured case. First, we 

developed a local fast compression method that, contrary to 

previous codecs, takes advantage of the specific properties of real-

time captured/reconstructed meshes. Second, we implemented a 

streaming mechanism based on a rateless code that allows robust 

transmission as is needed for protecting the loss-sensitive mesh. 

This system was integrated with state of the art rendering and 

capturing components. In the future, further integration with 

spatial audio and virtual words is planned. 
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