INTERNATIONAL ORGANISATION FOR STANDARDISATION ORGANISATION INTERNATIONALE DE NORMALISATION ISO/IEC JTC1/SC29/WG11 CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2016/m49043 July 2019, Gothenburg, SE

SourceSony CorporationStatusInput documentTitle[G-PCC] CE13.15 report on LoD generation for spatial scalabilityAuthorOhji Nakagami, Satoru Kuma

Abstract

This document provides G-PCC Core Experiment 13.15 report on LoD generation for the spatial scalability.

1 Introduction

The goal of Core Experiment 13.15 is to evaluate the Level of Details generation method for the lifting scheme for the spatial scalability.

The performance of the technique [2] is evaluated in the scope of the CE 13.15, in terms of RD performance and computational complexity. The performance is also evaluated in the simultaneous coding scenario.

2 Mandates

The mandates for CE are as follows:

- 1. To study the coding performance (e.g. the End-to-End BD Total Rate) compared to the anchor algorithm
- 2. To study the complexity (e.g. decoding time) of the proposed method for the spatial scalability
- 3. To evaluate the visual quality for the lower resolution point cloud with the common rendering software

3 Participants

Participant	Contact	Email	Туре
Sony	Ohji Nakagami	ohji.nakagami@sony.com	Р
	Satrou Kuma	satoru.kuma@sony.com	
Apple	Khaled Mammou	kmammou@apple.com	P/C
Hanyang	Euee S. Jang	esjang@hanyang.ac.kr	С
University			

LG	Sejin Oh	sjin.oh@lge.com	С			
Electronics						
Inc.						
Panasonic	Toshiyasu Sugio	sugio.toshiyasu@jp.panasonic.com	С			
(P=proponent, C=crosss checker)						

4 CE activity

4.1 Code preparation

The proposal is implemented on top of tmc13-version 6.0 software. The code is submitted to MPEG Git on 31 May 2019. A tool for the simulcast anchor 2 (See 5.3) is provided as patch 'subsampleLod123.patch' in the CE branch.

4.2 Cross check activity

The cross check is conducted as described in Table 4-1.

	Table 4-1 Test conditions	5
Test	Proponent	Crosschecker
Single coding anchor	C	TC
Simulcast anchor 1	Sony	Hanyang University
quantization based approach		
Simulcast anchor 2	Sony, Apple	Panasonic
sub-sampled based approach		
CE13.15 Proposal	Sony	LG

5 Test setting

5.1 Single coding anchor

Same as CTC.

5.2 Simulcast anchor 1: quantization based approach

Three resolution are encoded using the anchor tmc13-version 6.0 software.

The config for Lod3 is same as the CTC. The config for Lod1 and 2 are modified to compress with the lower resolution.

For the Lod1, the difference from CTC is shown as below.

The left is a configuration for CTC, the right is for the Lod1.

The setting file is uploaded to the CE branch as "octree-liftt-ctc-lossless-geom-lossy-attrs-MaxMinus2.yaml".

For the Lod2, the difference is shown as below.

4 dategories 5 losies-scon-lossy-atrs: 6 eneilag: 7 - mode: 0	do tegories: 5 lossies=com=lossy=attrs: 6 enre[lags: 7 encode 0
1 ## # constry parameters (ostree) 11 # - preserve lossless geometry 2 - trisognamdes igz, prež_0	9 ## 0 # geometry parameters (octree) 1 11 # - preserve lossless geometry property 2 - trisog.ndvd.sig.eds2.0 : 1 :
13 - norrsibulo i caldobinită; 10 - et decourenți-Modul încer; 3 - et decourenți-Modul încer; 3 16 - intra prediman, pode în lare, log2; 6 16 - intra prediman, pode în lare, log2; 6 16 - intra prediman, pode în lare, log2; 6	13 - norgalubilization/entitation 15 - clickocamery/Meducition/Entities 16 - clickocamery/Meducition/Entities 17 - position/Entities/Entities/Entities 17 - position/Entities/Entities/Entities
mtm mtm 1 titlibute coding (common options — relies on option ordering) 1 - accounting transform for leasy conditions 2 - accounting to drive dist2 based on single initial value by the encoder: 2 - accounting to drive dist2 based on single initial value for the accounting transformation of the accounting transformatio of the accounting transformation of the accounting tran	700 701
- Iconstituent Tiref Instance& News In Factor - hack reliablese State Series Series Series Series - renstremilyse : Series Series Series Series Series Series - number (Series state Series Se	- locoti iumi "Siraf lectanodolio sale factor" - hact reflectanodolio sale factor - transformijon
34 - {it22: \$leq_i1(2) - {odder.mix.in: 0} 37 - {codd:inent.in: 3{croup}^* ** n["cst3)" - {codd:init.on: 1} -	[34] - dist2: Seyan [8]soc.dist2]#4[] 30 - lodo:imation: 0 31 - lodo:imation: '\$[group] - m('cet3)' 32 - lodo:imation:

The setting file is "octree-liftt-ctc-lossless-geom-lossy-attrs-MaxMinus1.yaml".

5.3 Simulcast anchor 2: sub-sample based approach

Three sub-sampled point cloud are encoded using the anchor.

This sub-sampled point cloud for the Lod1, 2 and 3 are generated by a dump tool (See the usage in Annex A).

The configuration setting for the Lod3 is same as the CTC.

The configuration for Lod1 and 2 are modified.

For the Lod1, the difference from CTC is shown as below.

enc1 ags:	6 enclags:
- mode: 0	/ - mode: 0
generative parameters (octroe) preserve lossies generative parameters is long2: 0 mergebal (acted/bints) for: 0 mergebal (act	But geometry parameters (actree) If a connectry parameters (actree) If a preserve lostless geometry property Trisus, mode size (act-2)
<pre>particulate coding (compon aptions relies on option ordering) + use iffing transform for lossy conditions + - scale 10% (reflectance data to Bbit + - actionatically derive dist2 based on single initial value by the encoder: + - the initial dist2 is acaded by position@uartisationScale - codorfamsform i </pre>	<pre>#### ################################</pre>
- local tional 'i forf tectance80:100.scale [storf] - hack reflexance80:10: 3 [reflectance80:100.scale [storf] - transformTope: 2 - numberOffmerest bilightersInformation in 3 - leve(Offmetai Lount' Signa_Iod) - pessiteringmant rais (model adde)ustabilit2: 1	12 - Locoliticoui. '{if cel tectace80 kB, scile, fastor' - hack ref lectace30 kB, if cel tectace80 kB, scile, fastor' 0 - transformitype: 2 1 - numer/OfMaersetB, inder leftred iction: 3 1 - numer/OfMaersetB, inder leftred iction: 3 2 - levelOfMeersetB, inder leftred iction: 3 3 - levelOfMeersetB, inder leftred iction: 3 3 - levelOfMeersetB, inder leftred iction: 3
- dist2: Siste_dist2	34 - dist2: Seval \$[sec_dist2] * 16 [
- Toubectmaline: 0	35 - Todded mailton: 0

The left is a configuration for CTC, the right is for the Lod1. The setting file is uploaded to the CE branch as "octree-liftt-ctc-lossless-geom-lossy-attrs_Lod1.yaml".

For the Lod2, the difference from CTC is shown as below.

The setting file for Lod2 is contained in CE branch as "octree-liftt-ctc-lossless-geom-lossy-attrs_Lod2.yaml".

5.4 Proposal

Git repository: <u>http://mpegx.int-evry.fr/software/MPEG/PCC/CE/mpeg-pcc-tmc13.git</u> Branch: /<u>mpeg126/ce13.15/scalableLifting_r1</u>

Configuration: The config files same as the CTC are used except for Cat3. Cat3 is executed with option "--lodDecimation=0"

6 Results

The results are provided in the attached xls files. The file name for each test condition is as follows.

For proposed scalable lifting:

1. pcc-tmc3v6.0_octree_predlift_vs_CE13.15.xlsm

For simulcast anchor 1:

- $1. \ SimulcastAnchor_QuantizatinBased_LodMinus2.xlsm$
- $2. \ SimulcastAnchor_QuantizatinBased_LodMinus1.xlsm$

For simulcast anchor 2:

- $1. \ SimulcastAnchor_SubsampleBased_Lod1.xlsm$
- $2. \ SimulcastAnchor_SubsampleBased_Lod2.xlsm$
- $3. \ SimulcastAnchor_SubsampleBased_Lod3.xlsm$

For the End-to-End BD-rate evaluation:

- 1. pcc-tmc13-tmc3v6.0-ce13.15proposed_vs_anchor1.xlsm
 - In the evaluation, the reference PSNR is same as the CTC anchor. The reference bit size is summation of anchor CTC, QuantizatinBased_LodMinux1 and QuantizatinBased_LosMinux2 bit size.

 pcc-tmc13-tmc3v6.0-ce13.15proposed_vs_anchor2.xlsm In the evaluation, the reference PSNR is calculated by SubsampleBased_Lod1,2,3 combined point cloud. The reference bit size is summation of SubsampleBased_Lod1, Lod2 and lod3 bit size.

6.1 BD rate

Table 6-1 shows the BD rate of proposal compared to the simulcast anchor. The proposal has gain about 35% to 59% compared with the quantization based anchor, and 8% to 24% compared with the sub-sample based anchor.

Table 6-2 and Table 6-3 show the BDrate of the proposal for each sequences over the simulcast anchor1 and anchor2, respectively.

	Luma	Chroma Cb	Chroma Cr	Reflectance
CE13.15 vs anchor1 (quantization based)	-36.1%	-35.3%	-35.3%	-59.4%
CE13.15 vs anchor2 (subsample based)	-24.0%	-24.2%	-24.2%	-8.9%

Overall average End-to-End BD-TotalRate [%]

Table 6-1 BI) rate o	$\mathbf{f} \mathbf{the}_{1}$	proposal
--------------	----------	-------------------------------	----------

CI_ai —	lossless geometry, lossy at								
Chas	S		nd to End B	D-AttrRate [N. Container	Luna E	nd to End Bl	Character	N. D. Contara
catl-A	back at hall of sums up at 1,0000	- 16 2	7 -19.55	-15.05	///////////////////////////////////////	24.15	-24 28	-2705	
Catri A	base viewden unv12	·	F			·	*	P _25.35	
	dancer vox 11.00000001	-17.75	r -1925	· -1715		-2405	* -24.25	23.95	
	egyptian mask vox12	r 42.45	-36.65	· -35.65		-55.85	· -55 55	r -5545	
	facade 00009 vox12	-45.45	r -39.05	· -4175		44.45	* -42 B	43.55	
	facade 00015 vox14	r -45.9%	* -2705	-25.65		4885	· -47.05	r 4705	
	facade 00064 vox11	- 16.55	r -105%	-8.85		-21.35	r -19.85	r -1935	
	frog 00067 vox12	r30_3%	· -1855	-12.75		-38.15	-37.15	r -3705	
	head 00039 vox12	-27.75	r -23.35	-20.25		-30.05	* -29.25	-28.95	
	house without roof 00057 vo	34.85	· -29.55	-33.75		-37.15	-36.55	r -36.95	
	longdress viewdep vox12	-45.5%	r -4425	-43.85		-30.6%	· -29.6%	-29.75	
	longdress vox10_1300	-22.15	· -17.15	-17.25		-25.75	· -23.75	-2395	
	loot viewdeo vox12	-42.05	* -42.9%	-42.05		-25.9%	-25.9%	25.8%	
	loot vox10 1200	-18.0%	· -12.65	-10.5%		-25.05	-24.45	-2405	
	queen 0200	-17.25	P -8.15	·		-24.25	· -23.15	-23.45	
	redandblack viewdeo vox12	-43.95	· -44.15	-41.75		-29.55	-29.55	-29.05	
	redandblack vox 10 1550	- 19.6%	* -165%	-17.95		-25.15	* -24.25	-24.75	
	shiya 00035 yox12	-50.4%	-39.2%	-37.6%		· -51.7N	* -50.0N	· -49.6%	
	soldier viewdep vox12	-42.95	* -44.15	* -43.15	11111111	27.8%	* -27.95	· -27.8%	
	soldier vox10 0690	- 18.2%	* -15.0%	-15.7%		-25.35	-24.15	-24.35	
	thaidancer viewdep_vox12	-22.7%	· -185%	-18.5%		-26.5%	* -25.2%	25.15	
	ulb unicorn vox 13	52.25	· -4705	47.35		-55.25	· -54.8%	-54.8%	
cat3-fus	excityturnel glmm	-38.6%	· -38.7%	* -36.6%	53.2	-59.0%	* -58.5%	-58.45	-56.7%
	overpass glmm	44.25	40.15	-39.6%	* -536N	-60.5N	* -59.9%	* -59.9%	* -59.0%
	tollbooth almm	-52.5%	* -43.4%	-45.25	56.2%	61.0%	* -60.3N	60.5%	-59.8N
cat3-fra	m ford 01 g 1 mm				· 45.7%				61.35
	ford 02 g Imm	444444			46.5%	~//////////////////////////////////////			-61.3N
	ford_03_g1mm	4//////////////////////////////////////			7 -410%	~//////////////////////////////////////			-61.45
	gnxadas-junction-approach	4//////////////////////////////////////			25.75				-58.4%
	gnxadas-junction-exit	'//////////////////////////////////////			10.0%				-58.2%
	gnxadas-motorway-join	///////////////////////////////////////			7 38.7S	`//////////////////////////////////////			-58.7%
	gnxadas navigating bends	4//////////////////////////////////////			560%	-//////////////////////////////////////			-59.15
	Catl A average	32.5%	279%	-27.2%	77777777777777777	32.8%	-32.0%	32.0%	
	Cat3 fused average	-45.1%	-40.75	-40.5%	-54.3%	-60.2%	-59.6%	-69.6%	-58.5%
	Cat3 frame average	7//////////////////////////////////////			0.8%	7//////////////////////////////////////			-59.8%
	Overall average	34.0%	29.45	28.8%	15.7%	36.15	35.35	35.3%	-59.45

Table 6-2 The proposal vs the anchor (quantization based) in terms of BD bitrate.

C1_ai —	lossless geometry, lossy at	1							
			End-to-End B	D-AttrRate	DA1	E	nd-to-End Bl	D-TotalRate	[X]
Class	Sequence	Luma	Chroma Cb	Chroma Cr	Reflectance	Luma	Chroma Cb	Chroma Cr	Reflectance
cat1-A	basketball_player_vox11_0000	-26.6%	-26.7%	-30.1%		-57.9%	-57.5%	-59.1%	
	boxer_viewdep_vox12	-33.3%	-32.9%	-33.9%		-36.6%	-36.8%	-36.8%	
	dancer_vox11_00000001	-28.1%	-28.0%	-32.8%		-58.3%	-58.3%	-59.7%	
	egyptian_mask_vox12	-10.5%	-15.5%	-15.2%		-14.7%	-15.0%	-15.0%	
	fac ade_00009_vox12	-1.6%	0.7%	2.1%	3//////////////////////////////////////	-11.0%	-10.9%	-10.5%	
	fac ade_00015_vox14	24.5%	47.4%	51.6%		-3.0%	-1.6%	-1.4%	
	fac ade_00064_vox11	-0.2%	-0.5%	-0.2%	1111111111	-26.0%	-28.3%	-28.5%	
	frog_00067_vox12	22.2%	25.9%	32.2%		-7.8%	-7.8%	-7.8%	
	head_00039_vox12	19.0%	15.1%	17.6%		-7.2%	-8.2%	-8.4%	
	house_without_roof_00057_vo	15.45	12.2%	9.1%		-8.0%	-8.3%	-8.3%	
	longdress_viewdep_vox12	-30.3%	-37.2%	-36.7%		-33.4%	-35.1%	-34.8%	
	longdress_vox10_1300	-2.0%	-5.0%	-5.0%		-28.1%	-30.4%	-30.3%	
	loot_viewdep_vox12	-34.2%	-34.6%	-33.1%		-35.8%	-35.9%	-35.8%	
	loot_vox10_1200	-4.4%	-6.7%	-10.7%		-38.4%	-40.1%	-40.5%	
	gueen_0200	-0.7%	-0.2%	-2.9%	·/////////////////////////////////////	-37.1%	-38.9%	-39.1%	
	redandblack_viewdep_vox12	-32.1%	-34.7%	-35.1%		-34.2%	-34.7%	* -34.4%	
	redandblack_vox10_1550	-4.0%	-3.8%	-3.9%		-32.2%	-33.0%	-32.6%	
	shiva_00035_vox12	19.7%	33.3%	36.7%		-2.6%	-0.4%	0.1%	~~~~~
	soldier_viewdep_vox12	-33.5%	-34.2%	-33.9%		-34.6%	-34.9%	-34.9%	
	soldier vox10.0690	-2.6%	-5.9%	-3.8%		-34.7%	-36.2%	-36.3%	
	thaidancer viewdep vox12	-6.85	-10.6%	-10.8%		-37.8%	-39.5%	-39.5%	
	ulb_unicom_vox13	4.1%	3.7%	4.2%		-5.7%	r -5.7%	-5.7%	
at 3-fuse	e citytunnel g1mm	32.5%	40.3%	45.7%	235.7%	-5.1%	-2.7%	-2.6%	1.3%
	overpass g1mm	29.6%	40.5%	^{60.6%}	264.0%	-4.0%	-1.1%	-1.2%	0.9%
	tollbooth g1mm	8.4%	39.3%	⁶ 32.1%	2146%	-5.6%	-2.6%	-3.2%	-1.8%
at 3-fran	n ford 01 a1mm	4//////////////////////////////////////			27.5%				-8.6%
	ford 02 g1mm	~~~~~			25.5N				-8.7%
	ford 03 a1mm	<i>'////////////////////////////////////</i>			42.2%				-7.7%
	anxadas-junction-approach	~~~~~			17618				-16.0%
	anxadas-junction-exit	4//////////////////////////////////////			12445				-18.5%
	anxadas-motorway-join	111111111			182.5%	<i><i><i>'</i>//////////////////////////////////</i></i>			-16.2%
	anxadas-navigating-bends	111111111			220.6%	<i>``</i>			-13.65
	Cat1-A average	-6.6%	-6.3%	-6.1%		-26.6%	-27.2%	-27.2%	
	Cat3-fused average	23.5%	42.75	42 5%	23015	-4.9%	-2.2%	-2.3%	0.2%
	Cat3-frame average	7//////////////////////////////////////			115.35	1//////////////////////////////////////			-12.8%
		-2.0%	-0.4%	_0.2%			~~~~	~ ~ ~	

 Out it is the second s

6.2 Decoding time

		CTC anchor [sec]	Proposal [sec]	Ratio
Basketball_player_vox11 R4	Geometry octree	2.39	2.41	101%
	Attribute color	13.62	14.49	106%

The geometry and attribute decoding time is shown as Table 6-4.

Fable 6-4	Decoding	time	comparison
-----------	----------	------	------------

CE13.15 proposal has three changes (octree harmonized LoD construction, weight derivation, and distance normalization).

	CE13.15	subtest1	subtest2	subtest3	CTC anchor
Octree harmonized Lod	1	1	1	0	0
Weight derivation	1	0	1	1	0
Distance normalization	1	1	0	1	0
attribute[sec]	14.49	15.02	14.58	13.6	13.62

Table 6-5 Performance analysis

Table 6-5 shows the performance impact of each change. Since the decoding time of the subtest3 is same as the CTC anchor, the decoding time is increased by Octree harmonized Lod construction implementation.

In the current CE code, the proposed Lod construction is implemented on the anchor LoD construction code which uses attributeSearchRange for the neighbor point search. In the search code, the octree structure is derived based on the nearest point distance using the distance check function. This implementation is for the simplicity and readability of the proposed algorithm.

It is pointed that the attribute LoD generation process can be skipped by using the geometry octree LoD structure because the proposed attribute lifting LoD is same as the geometry. With such optimized implementation, the decoder runtime of the proposal will be same as the subtest3, accordingly same as the CTC anchor.

6.3 Visual quality

The visual quality of basketball_player_vox11_00000200 R6 with the rendering cube size 1.0 is shown as Figure 1.

The quantization based simulcast and the proposal are similar for the lower resolution decode result in terms of the number of points and the density of points.

In the sub-sample based simulcast result, the point number is similar, but the geometry accuracy of the decoded points in each Lod1,2,3. is same as the CTC anchor.

Quantization based Simul 6,975,864bits

Geo-lod11 2,925,514point

Geo-lod10 796,198point

Geo-Lod9 206,818point

Sub-sample based Simul 9,743,432bits

 Geo-lod11 2,925,514 points
 Geo-lod10 796,197 points
 Geo-Lod9 206,549 points
 Geo-Lod8 52,497 points

 Figure 1 basketball player vox11 (R6) with the rendering cube size 1.0
 Geo-Lod8 52,497 points
 Geo-Lod8 52,497 points

For the visual quality evaluation, the rendered point cloud image with the cube size 1.0 to 8.33 is shown as Figure 2. The cube size of the quantization based anchor and the proposal can be decide by Lod. The cube size 2 is for Goe-Lod10, the size 4 is for Geo-Lod 9. On the other hand, the cube size for sub-sample based anchor was adjusted while looking at actual gaps in the rendered images. The cube size is 1.8, 3.65, 6.58 for the basketball player sequence. Since sub-sample based anchor has a space and dense region in a frame, the cube size is adjusted by hand tuning.

Geo-lod11 2,925,514point Cube 1.00

Geo-lod10 796,198point Cube 2.03

Geo-Lod9 206,818point Cube 4.11

Sub-sample based Simul 9,743,432bits

Cube 1.00

-lod11 2.396.815 points) Cube 1.80

Cube 3.65

Lod1(Geo-lod11 132.920 points)

Cube 6.58

Proposal 5,460,712bit

The visual quality of the full resolution point cloud for the rate point R2, R4 and R6 is shown in Figure 3.

At the low rates (i.e. R2), the proposal has slightly more block noise than the quantization based simulcast anchor.

It is also pointed that the sub-sample based simulcast anchor has noticeable salt and pepper noise. The noise comes from the combination of separately coded LoD result.

In terms of bit amounts, there is a big different between the proposal and anchor simulcast. It is necessary to compare the results of relatively close generation amounts, not the same rate point. Figure 4 and Figure 5 show the visual comparison at the similar bitstrean size. In the comparison, the proposal looks good visual quality, in terms of the block noise, salt and pepper noise, and texture resolution, compared to the two simul cast anchors. When compared at close bit rates, the proposal quality is better because the QP is lower in the proposal.

R2 Quantization based 3,655,480bits

Sub-sample based 6,933,256bits

Proposal 3,187,160bits

Proposal

2,737,816 bits

R4 Quantization based 4,206,144bits

Sub-sample based 7,400,176bits

Proposal 5,460,712bits

Ko Quantization based Sub-san 6,975,864bits 9,743,4 Figure 3 full decode visual quality

Sub-sample based 9,743,432bits

ProposalR4Quantization based R23,187,160bit3,655,480bits(total)Figure 4 full decode visual quality (proposal vs quantization based)

Proposal R6Sub-sample based R25,460,712bit6,933,256bits(total)Figure 5 full decode visual quality (proposal vs sub-sample based)

The visual quality for the lower resolution point cloud is shown as Figure 6 and Figure 7. Figure 6 and Figure 7 compare the results of scalable decoding with relatively close bit amounts.

The sub-sample based uses Lod3 for comparison because the number of points is larger than that of sub-sample based Lod2, and the cube size for rendering can be smaller. The proposal is good for both block noise and texture resolution.

Proposal R3Quantization based R2Lod10 796,217 pointsLod10 796,198 points3,187,160bit3,655,480bits(total)Figure 6 scalable decode visual quality (proposal vs quantization based)

Proposal R6Sub-sample based R2Lod10 796,217 pointsLod3(Goe-lod11 2,396,815 points)5,460,712bit6,933,256bits(total)Figure 7 scalable decode visual quality (proposal vs sub-sample based)

7 Conclusion

The proposal has BD bitrate gain compare to the two simulcast anchors. In terms of visual quality of similar bit amounts, the proposal is better for block noise and texture resolution. We propose to adapt scalable lifting in the G-PCC standard.

8 Reference

- "G-PCC CE 13.15 on LoD generation for spatial scalability", ISO/IEC JTC1/SC29 WG11 (MPEG) output document w18489, Geneva, CH, March 2019
- [2] "[G-PCC] Spatial scalability support for G-PCC," ISO/IEC JTC1/SC29 WG11 (MPEG) input document m47352, Geneva, CH, March 2019

9 Annex A: Sub-sampled point cloud dump tool

The patch "subsampleLod123.patch" is applied to tmc13 test model version 6.0. The software with the patch can dump the three sub-sampled point cloud. To dump the sub-sampled source point cloud, the tool should be used with the lossless geometry setting (octree-liftt-ctc-lossless-geom-lossy-attrs) with "--colorTransform=0".

The options to dump the sub-sampled ply are as follows:

```
("outputLod123Ply",
    "Enable Lod123 which are subsampled for evaluation of CE13.15 scalable")
("lod1DataPath",
    "The sub-sampled Lod1 (low density) ply path")
("lod2DataPath",
    "The sub-sampled Lod2 (middle density) ply path")
("lod3DataPath",
    "The sub-sampled Lod3 (high density) ply path")
```