INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2019, m51002
Oct 2019, Geneva, Switzerland

	Source
	Samsung Electronics

	Status
	Input contribution

	Title
	[bookmark: _GoBack][V-PCC] EE2.6 on mesh coding using V-PCC

	Author
	Esmaeil Faramarzi, Keming Cao, Madhukar Budagavi, Hossein Najaf-Zadeh, and Rajan Joshi

Abstract
This contribution is a report of EE2.6 on mesh coding. In the 127th MPEG meeting, Samsung proposed an architectural extension to V-PCC to support mesh coding and presented some preliminary results [1]. This contribution presents some additional results using the previous framework and also presents results for a new framework. The results for lossless configuration are presented and compared with the Google Draco mesh codec [2].
Proposal
Dense and sparse meshes
In the 127th MPEG meeting, Samsung proposed an architectural extension to V-PCC to support mesh coding and presented some preliminary results [1]. These results were obtained using a test set consiting of dense meshes created from the CTC point clouds using Poisson Surface Reconstruction and 10-bit voxelization.
In this contribution we present additional results for a second test set. This test set consists of sparse meshes created from the Owlii obj mesh files through downscaling, transforming the texture images to vertex colors, and then voxelizing them to 10 bits.
Both the sets have undergone a cleaning operation to remove (up to 0.25%) non-manifold and degenerative faces resulting from the voxelization procedure.
Updated results for previously proposed architecture
The method proposed in the 127th MPEG meeting [1] encodes geometry and color using V-PCC which projects points in 3D onto 2D regular patches or RAW patches. The mesh connectivity is encoded using the TFAN mesh coding algorithm from the MPEG SC3DMC software [3]. In the state-of-the-art mesh codecs such as Draco and TFAN, mesh connectivity is encoded first and then geometry and color attributes are encoded using the traversal order of encoded connectivity (e.g. using Parallelogram prediction). However, since in V-PCC, the geometry and color are encoded using 2D video codecs, reordering information needs to be sent to the decoder along with the connectivity information.
We present updated results for the method proposed in the 127th MPEG meeting (referred here as TMC2+TFAN_F1) for both dense and sparse meshes for lossless coding configuration. Apart from the additional results for sparse meshes, the results for Google Draco are updated. After studying the source code of Draco we noticed that Draco uses floating-point precision when the X,Y,Z geometry components are defined as floating numbers in the header of the mesh Ply files. By changing the precision of geometry from floating-point to integer in the PLY header, as shown in Figure 1, a different compression mode, which is much more efficient, is activated.
[image:]
Figure 1: Switching the encoding mode of Draco by changing the precision of geometry from float to int in the mesh PLY header

Another point worth mentioning is that we added print commands in the Draco source code to print out the encoded sizes of individual attributes in the bitstream as Draco only prints out the total encoded size.
It is also our understanding that Draco can't be run in a completely lossless mode. We set the QP and compression level parameters to 0 and 10 (maximum), respectively, to get the highest possible quality.
The lossless coding results for TMC2+TFAN_F1 and Draco are presented in Tables 1 and 2. Table 3 compares the average performance of TMC2+TFAN_F1 against Draco (anchor). A negative number (green) in Table 5 indicates better performance (lower bits per point) for TMC2+TFAN_F1, whereas a positive number (red) indicates better performance for Draco.
It can be seen that for dense meshes, the performance of TMC2+TFAN_F1 is worse than Draco by an average of 17.29%. However for sparse meshes, TMC2+TFAN_F1 is worse than Draco by a much bigger margin. To improve the performance of TMC2+TFAN for sparse meshes, we propose a new framework in the next section.
Table 1: Lossless results for TMC2+TFAN_F1
[image:]

Table 2: The near-lossless results for Draco
[image:]

Table 3: Average performance of TMC2+TFAN_F1 (lossless) versus Draco (anchor, near-lossless)
[image:]
Proposed framework for improved performance on sparse meshes
In order to improve the the performance for TMC2+TFAN, we propose a new framework. In this framework, the mesh connectivity is encoded first using TFAN and then geometry and attributes are packed into RAW patches according to the traversal order of TFAN for connectivity. By using this framework, signaling of the reordering information is no longer required. Hence, although the geometry and attribute coding is not as efficient as in the first framework, this is compensated by skipping signaling of the reordering information. Another advantage of the new framework is that it dramatically reduces encoder complexity.
The results for the new method (referred to as TMC2+TFAN_F2) are presented in Table 4 for lossless configuration. Table 5 compares the average performance of TMC2+TFAN_F2 vs Draco. It should be noted that when executing our TMC2+TFAN_F2 code on sparse meshes, the HM decoder (which is 10-bit in TMC2 v5) generates an unmatched md5sum error for the geometry video. Upon investigation, we discovered that only one pixel of the reconstructed geometry frame is different than the input (by one codevalue), whereas the color is completely lossless, as seen in the sample output of the pc_error metric software for the basketball sequence below. We are trying to track down whether this is a bug in the HM. Due to this one-pixel difference for geometry of sparse meshes, we consider the results for TMC2+TFAN_F2 to be near-lossless. A negative number (green) in Table 5 indicates better performance (lower bits per point) for TMC2+TFAN_F2, whereas a positive number (red) indicates better performance for Draco.
3. Final (symmetric).
 mseF (p2point): 5.14562e-05
 mseF,PSNR (p2point): 107.854
 mseF (p2plane): 5.11315e-05
 mseF,PSNR (p2plane): 107.882
 c[0], F : 0
 c[1], F : 0
 c[2], F : 0
 c[0],PSNRF : inf
 c[1],PSNRF : inf
 c[2],PSNRF : inf
It can be seen that the results for both dense and sparse meshes show improvement over TMC2+TFAN_F1. In the case of sparse meshes the improvement is substantial. For both sparse and dense meshes, TMC2+TFAN_F2 performs slightly worse than Draco (by about 7.5%).
Table 4: Near-lossless results for TMC2+TFAN_F2
[image:]

Table 5: Average performance of TMC2+TFAN_F2 (near-lossless) versus Draco (anchor, near-lossless)
[image:]
Conclusion
In this report, we proposed a new framework which eliminated the need for sending reordering information by using RAW patches. In addition to significantly lower encoder complexity, the new framework leads to significantly improved results for sparse meshes. For both sparse and dense meshes the results of the new method are roughly 7.5% worse compared with Draco.

References
[1] m49588, “[V-PCC] EE2.6 Report on mesh coding,” ISO/IEC JTC1/SC29/WG11, Gothenburg, Sweden, July 2019.
[2] Google Draco mesh codec software, https://github.com/google/draco
[3] ISO/IEC JTC 1/SC 29/WG 11, Information technology — Coding of audio-visual objects — Part 16: Animation Framework eXtension (AFX).

image3.emf
Bytes BPP Bytes BPP Bytes BPP Bytes BPP Bytes written to file Output BPP

Loot 672,807 1,345,571 295,780 3.52 795,761 9.46 1,470 0.02 183,019 2.18 1,276,030 15.17

Redandblack 630,001 1,260,457 283,959 3.61 883,442 11.22 1,379 0.02 176,492 2.24 1,345,272 17.08

Soldier 887,023 1,774,028 406,887 3.67 1,271,436 11.47 1,926 0.02 245,603 2.22 1,925,852 17.37

Queen 733,735 1,468,685 332,667 3.63 926,716 10.10 1,600 0.02 201,885 2.20 1,462,868 15.95

Longdress 644,111 1,288,229 288,736 3.59 1,154,248 14.34 1,409 0.02 174,867 2.17 1,619,260 20.11

basketball_player 19,434 38,806 23,593 9.71 44,041 18.13 77 0.03 5,877 2.42 73,588 30.29

dancer 19,363 38,669 23,035 9.52 43,869 18.12 77 0.03 5,786 2.39 72,767 30.06

exercise 19,448 38,833 24,165 9.94 41,990 17.27 67 0.03 5,904 2.43 72,126 29.67

model 19,590 39,115 24,316 9.93 46,688 19.07 78 0.03 5,966 2.44 77,048 31.46

Connectivity

Google Draco

Mesh

No of

points

No. of

Faces

Geometry Color Others

Total

image4.emf
Dense Meshes Sparse Meshes

Geometry -56.75% 176.43%

Color -14.62% 69.87%

Connectivity Only 51.92% 80.22%

Total Connectivity 295.72% 393.39%

Total bitstream 17.29% 154.30%

image5.emf
Bytes BPP Bytes BPP Bytes BPP Bytes BPP Bytes written to file Output BPP

Loot 672,807 1,345,571 395,783 4.71 680,165 8.09 355 0.00 285,343 3.39 1,361,646 16.19

Redandblack 630,001 1,260,457 382,980 4.86 897,065 11.39 340 0.00 279,193 3.55 1,559,578 19.80

Soldier 887,023 1,774,028 522,530 4.71 1,012,712 9.13 401 0.00 390,944 3.53 1,926,587 17.38

Queen 733,735 1,468,685 450,222 4.91 866,395 9.45 331 0.00 308,380 3.36 1,625,328 17.72

Longdress 644,111 1,288,229 366,590 4.55 1,090,532 13.54 353 0.00 264,263 3.28 1,721,738 21.38

basketball_player 19,434 38,806 32,450 13.36 37,262 15.34 331 0.14 10,656 4.39 80,699 33.22

dancer 19,363 38,669 31,832 13.15 35,594 14.71 335 0.14 10,373 4.29 78,134 32.28

exercise 19,448 38,833 32,076 13.19 35,592 14.64 325 0.13 10,595 4.36 78,588 32.33

model 19,590 39,115 31,497 12.86 38,077 15.55 337 0.14 10,771 4.40 80,682 32.95

TMC2 v5 + TFAN_F2

Mesh

No of

points

No. of

Faces

Geometry Color Occ + Aux

Connectivity (Bytes) Total

image6.emf
Dense Meshes Sparse Meshes

Geometry 31.72% 34.43%

Color -9.63% -17.02%

Connectivity 55.63% 80.15%

Total bitstream 7.41% 7.64%

image1.png
ply ply

format ascii 1.0 format ascii 1.0

comment VCGLIB generated comment VCGLIB generated
element vertex 19434 element vertex 19434
property float x property int x

property float y property int y

property float z property int z

property uchar red property uchar red
property uchar green property uchar green
property uchar blue property uchar blue
property uchar alpha property uchar alpha
element face 38806 element face 38806
property list uchar int vertex_indices property list uchar int vertex_indices

end_header end_header

image2.emf
Bytes BPP Bytes BPP Bytes BPP TFAN Reordering Total TFAN Reordering Total Bytes written to file Output BPP

Loot 672,807 1,345,571 119,436 1.42 625,135 7.43 7,634 0.09 270,750 411,741 682,491 3.22 4.90 8.12 1,434,696 17.06

Redandblack 630,001 1,260,457 138,425 1.76 858,028 10.90 16,022 0.20 270,111 424,482 694,593 3.43 5.39 8.82 1,707,068 21.68

Soldier 887,023 1,774,028 175,870 1.59 977,285 8.81 14,539 0.13 378,613 592,918 971,531 3.41 5.35 8.76 2,139,225 19.29

Queen 733,735 1,468,685 143,981 1.57 823,183 8.98 24,618 0.27 311,609 563,795 875,404 3.40 6.15 9.54 1,867,186 20.36

Longdress 644,111 1,288,229 117,791 1.46 1,012,496 12.58 8,406 0.10 260,559 400,911 661,470 3.24 4.98 8.22 1,800,163 22.36

basketball_player 19,434 38,806 63,652 26.20 75,426 31.05 18,177 7.48 10,603 18,002 28,605 4.36 7.41 11.78 185,860 76.51

dancer 19,363 38,669 64,663 26.72 75,115 31.03 17,995 7.43 10,436 17,580 28,016 4.31 7.26 11.58 185,789 76.76

exercise 19,448 38,833 65,974 27.14 75,286 30.97 18,223 7.50 10,592 18,256 28,848 4.36 7.51 11.87 188,331 77.47

model 19,590 39,115 68,623 28.02 74,151 30.28 18,147 7.41 10,780 19,861 30,641 4.40 8.11 12.51 191,562 78.23

Total

TMC2 v5 + TFAN_F1

Connectivity + Reordering (Bytes) Connectivity + Reordering (BPP)

Mesh

No of

points

Geometry Color Occ + Aux

No. of

Faces

