
INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JCTC1/SC29/WG11 MPEG/m51024
October 2019, Geneva, Switzerland

Source: Apple Inc.
Status: Input document
Title: G-PCC low latency bypass bin coding
Author(s): David Flynn davidflynn@apple.com

Khaled Mammou kmammou@apple.com

Abstract
The current G-PCC specification includes two methods for formatting coded symbols. The first uses an
arithmetic codec to encode all symbols and produces a single data stream that forms the data unit/payload
body. The second [1, M47827] splits the symbols into two sub-streams, one coded with the arithmetic codec
and the other as a string of bypass bins in reverse order. The main motivation for this second encoding is to
avoid using the more expensive arithmetic codec to code incompressible symbols. The cost of this is that
the first bypass symbol to decoded is represented using the lass bit of the payload.

This contribution proposes an alternative approach based on a chunk-interleaved representation of the two
sub-streams. It aims to balance the benefit of not arithmetically coding bypass bins, the ability to transmit
and receive the bitstream as a whole in the forward order, with the chunk signalling overhead. Based on a
256-byte chunk size, the overhead is 0.4% of bitrate.

Chunking
Data from the two symbol streams are multiplexed to form chunks, as depicted in Figure 1. Each 256 byte
chunk is formed of:

• a one byte header that indicates the number of arithmetically coded bytes present in the chunk, n,

• n bytes of arithmetically coded data, and

• 255− n bytes of (non arithmetically coded) bypass data.

In the event that a low end-to-end latency mode is enabled, the last byte of bypass data (if present) contains

Symbols

AEC sub-stream

Bypass sub-stream

Symbol
type

Chunks

EC

Scheduler

(a) Splitting of sub-streams

256

255− n

n

1 n

AEC chunk

Bypass chunk

m 3

m

Padding bits

Final bypass byte

(b) A chunk

Figure 1 – Construction of a multiplexed sub-stream chunk

1 Date saved: 2019-10-02



a three-bit value indicating the number of bits present in the last byte.

The chunk syntax permits a chunk with no bypass data (n = 255), and similarly it permits a chunk consisting
only of bypass data (n = 0).

The chunk size of 256 bytes is chosen since it allows simple implementation when combined with bytewise
operation of the arithmetic codec.

A sequence of consecutive chunks are used to represent the entirety of the two symbol streams.

In order to avoid inefficiencies associated with the combined length of the symbol streams not being a multi-
ple of 255 bytes, the last chunk may be truncated. While the truncation point may be determined by external
means (such as a payload length indication), this is not necessary for decoding operations, since the number
of arithmetically coded bytes is known and the bypass bytes follow immediately. An actual decoder im-
plementation should either pad the buffer to the full chunk size, or otherwise test to avoid buffer overflow
conditions.

Overhead
Each chunk of 255 bytes of coded symbol data incurs an overhead of one byte (low end-to-end latency mode
disabled), equivalent to 0.4%.

Simulations using the common test conditions [2, 3] show that the implementation performance matches the
predicted results.

Latency
Considering only the chunk syntax, for a given set of coded symbols there exist multiple chunked repre-
sentations. In extrema, an encoder could choose to write chunks consisting only of arithmetic coded data
followed by chunks of bypass coded data, or vice versa.

In order to bound the resources required by the decoder, the chunk construction is semantically constrained
such that a decoder need maintain only two chunk buffers and a read pointer for each of the respective coded
symbol sub-streams.

With this construction, while it is possible to either bound the resources required by the decoder, or alterna-
tively, those of the encoder, placing a bound on the end-to-end delay is not possible. This may, however, be
achieved by allowing an encoder to produce incomplete chunks. First, consider extremes of a pair of coded
symbol streams consisting of m AEC bytes and a single bypass bit that can be coded in one of two ways:

• The first chunk contains 254 AEC bytes and one bypass byte, with all subsequent chunks containing
only AEC bytes.

• The last chunk containing fewer than 255 AEC bytes and one bypass byte, with all preceding chunks
containing only AEC bytes.

In the first case, the encoder cannot write out the first chunk until it is determined that there are no more
bypass bits, which is only known at the end of the stream. However, a decoder can decode chunk-by-chunk.

In the second case, the encoder can write out each chunk on-the-fly, but if the single bypass bin were required
at the start of decoding, a decoder must buffer the entire stream before continuing.

The total end-to-end latency, as well as the encoder and decoder resources can be bounded by allowing the
final bypass byte of a chunk to be incomplete. An encoder may, at its discretion, flush a chunk without
waiting a complete bypass byte.

Results

2 Date saved: 2019-10-02



Table 1 – Compression performance of chunked coding with bytewise occupancy coding compared to
TMC13v7.0 using octree geometry and LoD attribute coding

BPP Ratio [%] BD-Rate [Δ%] Avg. of ratio maxrssk [%] Ratio of avg. runtime [%]
Condition Class Geometry Colour Refl D1 D2 Y Cb Cr R Encoder Decoder Encoder Decoder

C1_ai cat1-A 0.4 0.4 0.4 100 100 101 100
C1_ai cat3-fused 0.4 0.4 0.4 0.4 100 100 97 93
C1_ai cat3-frame 0.5 100 100 99 96
C1_ai overall 0.4 0.4 0.4 0.5 100 100 100 98

C2_ai cat1-A 0.4! 0.4! 0.4! 0.4! 0.4! 100 100 100 97
C2_ai cat1-B 0.4! 0.4! 100 100 94
C2_ai cat3-fused 0.6! 0.6! 0.4! 0.6! 0.6! 0.5! 100 100 99 92
C2_ai cat3-frame 0.4 0.4 0.7 100 100 97 98
C2_ai overall 0.4! 0.4! 0.4! 0.5! 0.5! 0.6! 100 100 100

CW_ai cat1-A 100.4 100.4 100 100 100 101
CW_ai cat1-B 100.4 100 100 99 92
CW_ai cat3-fused 100.4 100.4 100.4 100 100 104 105
CW_ai cat3-frame 100.4 100.4 100 100 99 95
CW_ai overall 100.4 100.4! 100.4 100 100 99 96

CY_ai cat1-A 0.4 0.4 0.4 100 100 100 100
CY_ai cat3-fused 0.4 0.4 0.4 0.4 100 100 102 98
CY_ai cat3-frame 0.4 100 100 107 107
CY_ai overall 0.4 0.4 0.4 0.4 100 100 102 101

NOTE — Condition CY metrics reported using Hausdorff PSNR.

Table 2 – Compression performance of chunked coding with bytewise occupancy coding compared to
TMC13v7.0 using octree geometry and RAHT attribute coding

BPP Ratio [%] BD-Rate [Δ%] Avg. of ratio maxrssk [%] Ratio of avg. runtime [%]
Condition Class Geometry Colour Refl D1 D2 Y Cb Cr R Encoder Decoder Encoder Decoder

C1_ai cat1-A 0.4 0.4 0.4 100 100 101 101
C1_ai cat1-B 0.4 0.4 0.4 100 100 99 98
C1_ai cat3-fused 0.4 0.4 0.4 0.4 100 100 99 99
C1_ai cat3-frame 0.5 100 100 104 105
C1_ai overall 0.4 0.4 0.4 0.5 100 100 100 100

C2_ai cat1-A 0.4 0.4 0.5 0.5 0.5 100 100 99 99
C2_ai cat1-B 0.4 0.4 0.4 0.4 0.5 100 100 100 101
C2_ai cat3-fused 0.4 0.4 0.4 0.4 0.4 0.4 100 100 99 103
C2_ai cat3-frame 0.4 0.4 0.9 100 100 105 109
C2_ai overall 0.4 0.4 0.5 0.4 0.5 0.8 100 100 100 101

Table 3 – Compression performance of chunked coding with bitwise occupancy coding compared to TMC13v7.0
using octree geometry and LoD attribute coding

BPP Ratio [%] BD-Rate [Δ%] Avg. of ratio maxrssk [%] Ratio of avg. runtime [%]
Condition Class Geometry Colour Refl D1 D2 Y Cb Cr R Encoder Decoder Encoder Decoder

C1_ai cat1-A 0.4 0.4 0.4 100 100 97 97
C1_ai cat3-fused 0.4 0.4 0.4 0.4 100 100 91 88
C1_ai cat3-frame 0.5 100 100 108 104
C1_ai overall 0.4 0.4 0.4 0.5 100 100 99 98

C2_ai cat1-A 0.4! 0.4! 0.4! 0.4! 0.4! 100 102 92 93
C2_ai cat1-B 0.4! 0.4! 100 101 84
C2_ai cat3-fused 0.6! 0.6! 0.4! 0.6! 0.6! 0.5! 100 100 93 92
C2_ai cat3-frame 0.4 0.4 0.7 100 102 101 92
C2_ai overall 0.4! 0.4! 0.4! 0.5! 0.5! 0.6! 100 101 92

CW_ai cat1-A 100.4 100.4 100 100 92 95
CW_ai cat1-B 100.4 100 100 97 93
CW_ai cat3-fused 100.4 100.4 100.4 100 100 107 101
CW_ai cat3-frame 100.4 100.4 100 100 103 97
CW_ai overall 100.4 100.4! 100.4 100 100 96 95

CY_ai cat1-A 0.4 0.4 0.4 100 100 96 96
CY_ai cat3-fused 0.4 0.4 0.4 0.4 100 100 97 94
CY_ai cat3-frame 0.4 100 100 112 109
CY_ai overall 0.4 0.4 0.4 0.4 100 100 99 98

NOTE — Condition CY metrics reported using Hausdorff PSNR.

Bitstream syntax
ae_chunk() {

chunk_num_ae_bytes = u(8);
for (i = 0; i < num_ae_bytes; i++)

chunk_ae_byte[i] = u(8);
for (j = 0; i < 255; j++, i++) {

3 Date saved: 2019-10-02



if (chunk_padding_enabled_flag && i == 254) {
chunk_bypass_5bits = u(5);
chunk_bypass_num_flushed_bits = u(3);

} else
chunk_bypass_byte[j] = u(8);

}
}

chunk_padding_enabled_flag equal to 1 indicates that the last byte of a chunk containing fewer than 254
chunk_ae_byte elements contains a variable number of padding bits. chunk_flush_enabled_flag equal to 0
indicates that chunk_bypass_5bits and chunk_bypass_pad are not present in the bitstream.

chunk_num_ae_bytes indicates the number of chunk_ae_byte and chunk_bypass_byte elements present in
a chunk.

The variable NumChunkBypassBytes is derived as follows:

Max(0, (chunk_padding_enabled_flag ? 253 : 254) - chunk_num_ae_bytes)

chunk_ae_byte[i] specifies the i-th byte of the arithmetically encoded symbol sub-stream of the current
chunk. Each chunk_ae_byte[i] is appended to the AeByteStream array as follows:

for (i = 0; i < chunk_num_ae_bytes; i++)
AeByteStream[AeStreamLen++] = chunk_ae_byte[i]

chunk_bypass_byte[j] specifies the j-th byte of the bypass symbol sub-stream of the current chunk. Each
chunk_bypass_byte is appended to the BypassBitStream array as follows:

for (j = 0; j < NumChunkBypassBytes; j++)
for (b = 7; b >= 0; b--)

BypassBitStream[BypassBitStreamLen++] = (chunk_bypass_byte[j] >> b) & 1

chunk_bypass_num_flushed_bits specifies the number of bypass bits contained in chunk_bypass_5bits.

chunk_bypass_5bits specifies the values of up to five bypass bits at the end of the bypass symbol sub-stream
of the current chunk. Each bit is appended to the BypassBitStream array as follows:

for (b = 0; b < chunk_bypass_num_flushed_bits; b++)
BypassBitStream[BypassBitStreamLen++] = (chunk_bypass_5bits >> (4 - b)) & 1

References
[1] D. Flynn and S. Lasserre, “G-PCC Bypass coding of bypass bins,” ISO/IEC JTC1/SC29/WG11, 126th

meeting, Geneva, Tech. Rep. m47827, Mar. 2019.

[2] 3DG, “Common Test Conditions for PCC,” ISO/IEC JTC1/SC29/WG11, 127th meeting, Gothenburg,
Tech. Rep. w18665, Jul. 2019.

[3] ——, “G-PCC performance evaluation and anchor results,” ISO/IEC JTC1/SC29/WG11, 127thmeeting,
Gothenburg, Tech. Rep. w18667, Jul. 2019.

4 Date saved: 2019-10-02


	Chunking
	Overhead

	Latency
	Results
	Bitstream syntax

