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Abstract
This document presents a theoretical an experimental analysis about the overflow problem in RAHT and reports the impact of the number of iterations for the square root approximation as part of the Core Experiment 13.21 [1].
1 Introduction
The mandates of this Core Experiment are:
I. Perform a study on the bit-depth needed to avoid overflow for a certain number of points. 
a) TMC13v6 (previous anchor using adjusted quantization step) – RAHT using a Lifting implementation [2].
b) TMC13v7 (current anchor) – RAHT using a Butterfly implementation [3].
c) TMC13v7 (using adjusted coefficient) – RAHT using a Lifting implementation [4].

II. Study the number of iterations for square root approximation versus BD-rate gains (based on TMC13v7).

Originally, mandate I.c) was meant to be studied on top of TMC13v7 [1]. However, RAHT using Lifting implementation [2] was completely removed from TMC13 and substituted in TMC13v7 by the RAHT with transform domain prediction using the Butterfly implementation [3]. As a result, mandate I.c) was reformulated as:

c) TMC13v6 (using adjusted coefficient) – RAHT using a Lifting implementation [3].


2 Theoretical Overflow Analysis in RAHT Implementations
2.1 TMC13v6 (previous anchor using adjusted quantization step) – RAHT using a Lifting implementation.

· Overflow limits of DC coefficient quantization:

	Code: Adjusted quantization step computation
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	Variables
	Equation
	Limitation

	N: number of points
Qs: quantization step
aQs: adjusted quantization step
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Figure 1 shows the relationship between the quantization parameter (QP) and the maximum number points (N) of a point cloud. The red dots represent the sequences in the common tests conditions (CTC) and the blue line represents the maximum number of possible points for a given QP. All points below the blue line can be correctly encoded.
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Figure 1 Relation between quantization parameter QP
 and the maximum number of a points N in a point cloud.











· Overflow limits of AC coefficients quantization

Adjusted quantization step computation in TMC13v6:

	Code: Adjusted quantization step computation
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	Variables
	Equation
	Limitation

	N: number of points
Qs: quantization step
𝑤𝐿 and 𝑤𝑅: left and right weights
aQs: adjusted quantization step
M: number of system bits
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Figure 2 shows the relationship between QP and the number of points for each sequence in the CTC (in red) as well as the overflow threshold (in blue). All points above the blue line are subject to overflow.
[image: ]
Figure 2 Relation between the quantization parameter QP
 and the maximum number of a points N in a point cloud.

Table 1 shows the relationship between the number of points N, the number of system bits M and the value of the quantization parameter (QP) or quantization step (Qs). For M = 32, the maximum number of points is 0.



Table 1 Relationship between the number of points N,
 the number of system bits M and the quantization parameter QP.
[image: ]
Alternatively, the plot in Figure 3 shows how many system bits M would be necessary to represent a point cloud, given the value of QP and the number of points N. The values of N used in the plot are the number of points of the sequences in the CTC. The dotted line indicates M = 64 bits. One may conclude that for QP = 52, almost all sequences in the CTC are subject to overflow. On the other hand, for QP = 22, almost all sequences do not have problems with overflow.
. [image: ]
Figure 3 Relation between system bits M, QP 
and the number of points N in a point cloud.


2.2 TMC13v6 (using adjusted coefficient) – RAHT using a Lifting implementation.

· Overflow limits of DC coefficients

	Code: Adjusted coefficient computation
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	Variables
	Equation
	Limitation

	a: coefficient
N: number of points
QsFor: forward quantization step 
: adjusted coefficient
aQuant: quantized coefficient
scale: LUT-based quantization parameter
M: number of system bits
	



	




Figure 4 shows the relationship between the absolute values of different values of AC coefficients |a| and the number of point in the point cloud. The margin for DC coefficient quantization is large (around 1020). 
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Figure 4 Relation between the absolute value of DC coefficient |a|
 and the maximum of points N in a point cloud.











· Overflow limits of AC coefficients

	Code: Adjusted coefficient computation [4]
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	Variables
	Equation
	Limitation

	a: coefficient
𝑤𝐿 and 𝑤𝑅: left and right weights
: adjusted coefficient
M: number of system bits
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Figure 5 shows the relationship between different values of AC coefficients a and the multiplication of left and right weights (𝑤𝐿 x 𝑤𝑅). The red dots represent the maximum values of wL x wR for each sequence in the CTC, positioned at a potential value of |a|, as well as the overflow threshold in blue. All points above the blue curve are subject to overflow. 
[image: ]
Figure 5 Relationship between the absolute value of an AC coefficient |a|
 and the maximum value of (wL x wR).

It is important to highlight that in this formulation, the value of the quantization step Qs does not play a role in the definition of the overflow conditions. The overflow threshold is determined by the values of the weights and AC coefficients only. This makes the plots in Figures 2.2 and 2.4 not fully comparable. Nevertheless, for the sake of the proposed theoretical analysis, one may consider that the maximum value of wL x wR   will occur when wL = wR  = N/2. In this case, a relationship between a, M and N can be stablished using the following equation,
[image: ]
Tests were performed considering all sequences in the CTC and it was observed that the value of a was bounded by ±2562. Considering the worst case, where |a| = 2562, Figure 6 shows the relation between M and N. From this plot one may notice that most of the sequences were affected by overflow (red points above dashed horizontal blue threshold).
[image: ]
Figure 6 Relation between the number of points N and the minimum 
number of system bits needed to encode each point cloud in CTC

Table 2 extends the results for different values of |a|. For instance, if the maximum value of |a| is 13312 and the number of available system bits is M = 64, then the maximum number of points in a point must be 645278 points. For M = 32, the maximum number of points is 0.
Table 2 Relation between the maximum absolute value of AC coefficients |a|, 
the number of system bits M and the number of points N.
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2.3 TMC13v7–RAHT using a Butterfly implementation (transform domain prediction)

Let’s consider a simplified representation of a 2-point elementary RAHT computation in one single direction x given by,










Where g and h represent the low- and high-pass coefficients of the transform, respectively. This is the formulation which is implemented by the RahtKernel class in TMC13v7. The ratios between weights used to define a and b variables and the 215  factor that should be multiplying these two variables is placed inside the square root, thus resulting in wL x 230 and wR x 230 . One limitation that results from this formulation is detailed below. If the system precision is set to M = 64 bits and using k = 15 bits as the fixed-point precision, the transform would be able to deal with point clouds up to N = 1010. If M = 32 bits and k = 8 bits, N drops to 104. In Figure 7, the red dots represent the sequences in the common tests conditions (CTC) and the blue line represents the maximum number of possible points for a given k.
 

	Code: Constants a and b computation
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	Variables
	Equation
	Limitation

	N: number of points
𝑤𝐿 and 𝑤𝑅: left and right weights
lf and hf: low and high frequency coefficients
k: fixed-point precision bits
a and b: RAHT weights ratio
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Figure 7 Relation between system bits M, fixed-point precision k and 
number of points N for the butterfly implementation.


The following table synthesizes some special points of interest.
Table 3 Relation between system bits M, fixed-point precision k and 
number of points N: special points of interest.
[image: ]
However, this is not the only limitation. As the encoding process evolves, the values of the coefficients keep increasing, which raises the question about the relationship between the magnitude of the coefficients and number of voxels in a point cloud. To evaluate this problem an experiment was carried out in which synthetic point clouds were generated and the value of the coefficients were analyzed. Different fully occupied (“solid”) point clouds were artificially populated with all RGB attributes equal to 2D-1, where D is the bit-depth of the attributes.  The illustration below derives the equation that estimates the final value of DC, given a certain number of points N. It is assumed that this experiment will generate the maximum value that a coefficient can achieve during the encoding processes and if the encoder can deal with this coefficient, it would be able to deal with any other intermediate coefficient.
[image: ]
Point clouds of d x d x d voxels, with d = 2, 4, 8, 16, 32, 64, 128, 256 and 512 were encoded using TMC13v7 and the biggest value of the DC coefficient was determined. By default, fixed-point precision is k = 15 bits. Since all attributes have the same value, AC coefficients are 0 trough out the whole encoding process. Using the above derived equations, the predicted theoretical value for d = 64 (262144 points), for instance, is equal to,
,         .
The following set of tables summarize the experimental results for all values of d. See how the theoretical DC (4278190080) for d = 64 is close to the correspondent experimental DC (4278474112). The value is highlighted in a light blue rectangle in Table 4. The difference is due to the fixed-point precision, including the successive approximations for the square root. From the results below, one may notice that for d = 128, 256 and 512, the sum of the weights is not equal to the number of points in the point cloud. In addition, all high-pass coefficients should be 0, but in some cases they are not. This happens because of the partition method (with --partitionMethod=2 and --sliceMaxPoints=1100000). Table 4 shows general results, while Tables 5, 6 and 7 show some specific results for d = 128, 256, 512. The three first rows in these tables reproduce the values for the three biggest observed attribute values and the next rows show illustrative examples where hf is different than 0.
Table 4 Point clouds of d x d x d voxels, with d = 2, 4, 8, 16, 32, 64, 128, 256 and 512 were encoded 
using TMC13v7 and the biggest value of the DC coefficient was determined. Fixed-point fractionary bits k = 15.
	DC Coefficient Experimental Analysis	

	
RahtKernel Transform implementation:

lf = left * a + right * b
hf = right * a - left * b

	d
	# points
	Left
	right
	wL
	wR
	lf
	log2(lf)
	hf

	2
	8
	16712438    
	16712438    
	4
	4
	23635492           
	24.49
	0

	4
	64
	47187888    
	47187888    
	32
	32
	66735264           
	25.99
	0

	8
	512
	133699498   
	133699498   
	256
	256
	189083928           
	27.49
	0

	16
	4096
	378158880   
	378158880   
	2048        
	2048        
	534809534           
	28.99
	0

	32
	32768
	1069595988  
	1069595988  
	16384       
	16384       
	1512671426           
	30.49
	0

	64
	262144
	3025269512
	3025269512
	131072
	131072
	4278474112
	31.99
	0

	1128
	2097152
	6050411520
	6050411520
	524288
	524288
	8556767904
	32.99
	0

	2256
	16777216
	5946408807
	5946408807
	507904
	507904
	8409682524
	32.97
	0

	3512
	134217728
	6111489047  
	6111489047  
	536576      
	536576      
	8643146528           
	33.01
	0



Table 5 Results for 1d = 128, k = 15 bits.
	left
	right
	wL
	wR
	lf
	hf

	6050411520  
	6050411520  
	524288      
	524288      
	8556767904           
	0

	3037069312  
	3037069312  
	524288      
	524288      
	4295161928           
	0

	3037069312  
	3037069312  
	524288      
	524288      
	4295161928           
	0

	
	
	
	
	
	

	1069595988 
	8556767904
	16384
	1048576
	8623356521
	-97925

	536895242
	4295161928
	16384
	1048576
	4328586802
	-49155

	536895242
	4295161928
	16384
	1048576
	4328586802
	-49155










Table 6 Results for 2d = 256, k = 15 bits.
	left
	right
	wL
	wR
	lf
	hf

	5946408807
	5946408807
	507904
	507904
	8409682524
	0

	2984864028
	2984864028
	507904
	507904
	4221330834
	0

	2984864028
	2984864028
	507904
	507904
	4221330834
	0

	
	
	
	
	
	

	1035631706
	1069595988
	15360
	16384
	1488816780
	17241

	519846502
	536895242
	15360
	16384
	747327638
	8656

	519846502
	536895242
	15360
	16384
	747327638
	8656

	1035632020
	1069595988
	15360
	16384
	1488816999
	17015

	519846660
	536895242
	15360
	16384
	747327748
	8542

	519846660
	536895242
	15360
	16384
	747327748
	8542



Table 7 Results for 3d = 512, k = 15 bits.
	left
	right
	wL
	wR
	lf
	hf

	6111489047
	6111489047
	536576
	536576
	8643146528
	0

	3067727835
	3067727835
	536576
	536576
	4338520610
	0

	3067727835
	3067727835
	536576
	536576
	4338520610
	0

	
	
	
	
	
	

	926083468
	6050411520
	12288
	524288
	6120979417
	405015

	464857584
	3037069312
	12288
	524288
	3072491629
	203302

	464857584
	3037069312
	12288
	524288
	3072491629
	203302

	922835980
	6026684416
	12288
	524288
	6097033734
	23635

	465051202
	3037069312
	12288
	524288
	3072520936
	11911

	465051202
	3037069312
	12288
	524288
	3072520936
	11911



If partition is disabled (--partitionMethod=0), the results for d = 128 and 256 are as expected: all hf becomes zero and the highest sum of wL and wR is equal to the number of points in the point cloud, as shown in Table 8. In addition, the predicted DC value is correctly obtained experimentally. However, for d = 512, right and left become negative, indicating a limitation in the maximum number of points the codec can deal with. In other words, even though the theoretical analysis has indicated that the maximum number points in the point cloud could be up to N = 1010, given a machine precision of M = 64 bits and a fixed point precision of k = 15 bits, the actual maximum number of bits lies between 107 and 108. Considering the worst case scenario, N = 107 can be considered the recommend maximum number of points in a point cloud.
Table 8 Results for partitionMethod = 0 (disabled) and k = 15 fixed-point fractionary bits.
	d
	# points
	left
	right
	wL
	wR
	lf
	log2(lf)
	hf

	2
	8
	16712438    
	16712438    
	4
	4
	23635492           
	24.49
	0

	4
	64
	47187888    
	47187888    
	32
	32
	66735264           
	25.99
	0

	8
	512
	133699498   
	133699498   
	256
	256
	189083928           
	27.49
	0

	16
	4096
	378158880   
	378158880   
	2048        
	2048        
	534809534           
	28.99
	0

	32
	32768
	1069595988  
	1069595988  
	16384       
	16384       
	1512671426           
	30.49
	0

	64
	262144
	3025269512
	3025269512
	131072
	131072
	4278474112
	31.99
	0

	128
	2097152
	8556767904  
	8556767904  
	1048576     
	1048576     
	12101371406           
	33.49
	0

	256
	16777216
	24202158130
	24202158130
	8388608     
	8388608     
	34227795778           
	34.99
	0

	512
	134217728
	-268447620
	-268447620
	67108864    
	67108864    
	-379650866
	-
	0



Since the proposed uRAHT uses the exact butterfly algorithm in [5] as its kernel, the above mentioned results for d = 512 led us to the conclusion that a possible problem was occurring outside the RahtKernel class. Tests were carried out for k = 8 fixed-point fractionary bits and the limitation for d = 512 remained.
Table 9 Results for --partitionMethod = 0 (disabled) and k = 8 fixed-point fractionary bits.
	d
	# points
	left
	right
	wL
	wR
	lf
	log2(lf)
	hf

	2
	8
	130532
	130532
	4
	4
	184580
	17.49
	0

	4
	64
	369240      
	369240      
	32
	32
	522128           
	18.99
	0

	8
	512
	1044256
	1044256
	256
	256
	1476644
	20.49
	0

	16
	4096
	2948320
	2948320
	2048        
	2048        
	4169108
	21.99
	0

	32
	32768
	8354056
	8354056
	16384       
	16384       
	11813158
	23.49
	0

	64
	262144
	23628812
	23628812
	131072
	131072
	33412616
	24.99
	0

	128
	2097152
	66832440
	66832440
	1048576     
	1048576     
	94505248
	26.49
	0

	256
	16777216
	189030480
	189030480
	8388608     
	8388608     
	267300914
	27.99
	0

	512
	134217728
	-2096704
	-2096704
	67108864    
	67108864    
	-2964870
	-
	0



Two more synthetic point-clouds were generated. In both cases d = 512, but the density of the point clouds was reduced by a factor of 2 and 4. Results are shown in Table 10. Full-density point cloud for d = 512 (dens = 1) was include for comparison. Again, in the subsampled version of the point clouds, weights and predicted values for coefficients were obtained. One may conclude that a point cloud with up to 67,108,864 can be correctly encoded without any problem.
Table 10 Results for --partitionMethod = 0 (diasabled) and k = 15 fixed-point fractionary bits, 
point cloud density reduced by a factor of 2 and 4.
	d
	dens
	# points
	Left
	right
	wL
	wR
	lf
	log2(lf)
	hf

	512
	1
	134217728
	-268447620
	-268447620
	67108864    
	67108864    
	-379650866
	-
	0

	512
	½
	67108864
	48404316260
	48404316260
	33554432    
	33554432    
	68455591556           
	35.99
	0

	512
	¼
	33554432
	34227071614
	34227071614
	16777216    
	16777216    
	48405485618           
	35.49
	0



In depth investigations showed that for d = 512 and dens = 1, the first time a problem occurs is inside the reduceLevel() function, when level = 24, more specifically, when computing (attrsInWrIt - numAttrs + k in the following part of the code:
[image: ]
In this particular situation, when i = 1, newPair = false,  attrsInWrIt = 2139095040, numAttrs = 3 and k = 0, the result becomes (attrsInWrIt - numAttrs + k) = -16777216. 

In summary, the study was concluded without identifying any situation that could result in a worrying and immediate overflow problem.  The results indicate that the current RAHT implementation in TMC13v7 can handle up to 67,108,864 points, but as stated before, a more conservative recommendation would be N = 107 points.

3 Square root approximation
In this section we evaluate the impact of the number of iteration for the square root approximation in the TMC13v7. In the current version of the test model, the approximation of the square root is performed using Newton’s formulation. It consists in an initial guess followed by 2 iteration. Here, the number of iterations is increased to 3 and 4, and BD-rates are computed. 
The two next tables show the affected part of the code and where the square root is being called, respectively.
	Anchor (TMC13v7): 2 iterations
	3 iterations
	4 iterations

	uint32_t isqrt(uint64_t x)
{
.
.
.
  a = (a + x / a) >> 1;
  return (a + x / a + 1) >> 1;
}
	uint32_t isqrt(uint64_t x)
{
.
.
.
  a = (a + x / a) >> 1;
  a = (a + x / a) >> 1;
  return (a + x / a + 1) >> 1;
}
	uint32_t isqrt(uint64_t x)
{
.
.
.
  a = (a + x / a) >> 1;
  a = (a + x / a) >> 1;
  a = (a + x / a) >> 1;
  return (a + x / a + 1) >> 1;
}



[image: ]
3.1 Preliminary Experiment
In a preliminary experiment, the behavior of the number of iterations for the square root approximation is performed outside the context of TMC13v7. The difference between the values returned by the approximation is compared with the values return by the sqrt() from the C++ math library, as defined in code below:
for (i = 0; i < 100000000000; i += 100000) {
  error = isqrt(i) - sqrt((double)i);
}
One can see that the mean squared error (MSE) drops significantly when the number of iterations is increased from 2 to 3, but not much when it is increased from 3 to 4. The increase of processing time is negligible.



	Anchor (TMC13v7): 2 iterations
	3 iterations
	4 iterations

	[image: ]
MSE: 858.4182
Average time: 6.53601e-006 s
	[image: ]
MSE: 0.0835
Average time: 6.65901e-006 s
	[image: ]
MSE: 0.0833
Average time: 6.75801e-006 s




Figure 8 Error computation for the square root approximation.
3.2 Impact on BD-rate
Next, the impact of choosing three iterations for the square root is shown for conditions C1, considering octree-raht and octree-predlift. For the complete set of results, see the worksheets distributed with the report. Average BD-rate differences are no bigger than 1.0%. Furthermore, RAHT showed itself to be more susceptible to the increase of the number of iterations than Lifting.
· octree-raht






· octree-predlift













Even though additional iterations result in better approximation of the square root, the improvement does not always imply better BD-rates in the CTC. In our simulations, the following single negative outlier was identified for octree-raht with 3 iterations, C2, Cb component. From the plots it is possible to conclude that the problems comes mostly from low bitrates.







[image: ][image: ]
Six other cases of positive outliers were also obverved.



4 Conclusions
4.1 RAHT Implementation
The theoretical analysis conducted in this document, showed that TMC13v6 (previous anchor, using adjusted quantization step [2]) and the proposal presented in m48918 (using adjusted coefficient [4]) are very susceptible to overflow. However, since [4] was not adopted and [2] was removed from TMC13v7, they don’t represent a concern. As for the Butterfly implementation with transform domain prediction the recommendation is to consider N = 107 as the maximum number of points TMC13v7 can handle, with an experimentally-determined tighter bound of 67,108,864 points. The study was concluded without identifying any situation that could represent an immediate concern in terms of overflow. 
4.2 Square root approximation
The recommendation is to increase the number of iterations from 2 to 3, since it increases the performance of the square root approximation and does not add significant complexity to the codec. Although the gains for the CTC are marginal, in the future there might be new sequences or improvements in the codec that may require more precision. In terms of outliers, 6 point clouds were benefited from the increase of the number of iterations and one not. 
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wLwRm = (weightleft * weightRight);

wLwRs = (weightLeft + weightRight);

aThSquared = (*attributeTransformedHigh * *attributeTransformedHigh);
adjustedCoefficient = (*attributeTransformedHigh > @ ? 1 : -1);
adjustedCoefficient *= isqrt((aThSquared * wLwRm + (wLwRs>>1)) / wLwRs);





image13.png
isid





image14.png
(wy X wg) <




image15.emf
0 1 2 3 4 5 6 7

|a| (Absolute value of the coefficient)

10

4

10

4

10

6

10

8

10

10

10

12

10

14

10

16

w

L

 

w

R

M = 64 bits (System Precision)

Overflow threshold

All sequences


image16.png
M

w22 <2
az

2{/(2M-1)
la]

N <





image17.emf
10

4

10

5

10

6

10

7

10

8

N (Number of points)

55

60

65

70

75

80

85

M

 

(

S

y

s

t

e

m

 

p

r

e

c

i

s

i

o

n

)

All sequences

M = 64 bits


image18.png
2J@"—1)

" ——
N -

13312 645278

N <

23757 361578
34202 251156
44646 192399
55091 155922
65536 131072




image19.png
RahtKernel(int weightleft, int weightRight)
{
int w = weightleft + weightRight;
_a.val = isqrt((int64_t(weightleft) << (2 * _a.kFracBits)) / w);
_b.val = isqrt((int64_t(weightRight) << (2 * _b.kFracBits)) / w);
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for (int k = @; k < numAttrs; k++) {
*(attrsInWrIt - numAttrs + k) += *attrsInRdIt;
attrsOut->push_back(*attrsInRdIt++);
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Reference: tmC13v6.0-26-gecObacasinteg8_octree_raht_sqrt_2x_ANCHOR
Tested: tmC13v6.0-26-gecO6aca=integs_octree raht_sqrt 3x

Allintra

lossless geometry, lossy attributes [all intra]

cLai End-to-End BD-AttrRate [%]

Luma Chroma cb Chroma cr Reflectance
Catl-A average 0.1% -05%
Catl-B average 0% 0%
Cat3-fused average 0.0% 0.1% 0.0%
Cat3-frame averagd/ 0.0%

Overall average -0.1% -0.5% -0.7% 0.0%
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Reference octree_raht_sqrt_2x_ANCHOR
Tested: octree_raht_sqrt_3x
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Reference: tmC13v6.0-26-gecObacasinteg8_octree_raht_sqrt_2x_ANCHOR
Tested: tmC13v6.0-26-gecO6aca=integs_octree raht_sqrt 3x

Allintra

lossless geometry, lossy attributes [all intra]

cLai End-to-End BD-AttrRate [%]

Luma Chroma cb Chroma cr Reflectance
Catl-A average 0.1% -05%
Catl-B average 0% 0%
Cat3-fused average 0.0% 0.1% 0.0%
Cat3-frame averagd/ 0.0%

Overall average -0.1% -0.5% -0.7% 0.0%
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Reference octree_raht_sqrt_2x_ANCHOR
Tested: octree_raht_sqrt_3x
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Reference: tmc13v6.0-26-gcc06aba=integ8_octree_predlift_sqrt_2x_ANCHOR
Tested: tmc13v6.0-26-gcc06aba=integ8_octree_predlift_sqrt_3x
All Intra
lossless geometry, lossy attributes [all intra]
Cl_ai End-to-End BD-AttrRate [%]
Luma Chroma Cbh Chroma Cr Reflectance
Catl-A average 0.0% 0.0% 0.0%
Cat1-B average #DIV/0! #DIV/0! #DIV/0! 0
Cat3-fused average 0.0% 0.0% 0.0% 0.0%
Cat3-frame average’ 0.0%
Overall average 0.0% 0.0% 0.0% 0.0%
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Reference: tmc13v6.0-26-gcc06aba=integ8_octree_predlift_sqrt_2x_ANCHOR
Tested: tmc13v6.0-26-gcc06aba=integ8_octree_predlift_sqrt_3x
All Intra
lossless geometry, lossy attributes [all intra]
Cl_ai End-to-End BD-AttrRate [%]
Luma Chroma Cbh Chroma Cr Reflectance
Catl-A average 0.0% 0.0% 0.0%
Cat1-B average #DIV/0! #DIV/0! #DIV/0! 0
Cat3-fused average 0.0% 0.0% 0.0% 0.0%
Cat3-frame average’ 0.0%
Overall average 0.0% 0.0% 0.0% 0.0%
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// Quantization of DC coefficients
quantStepSizeluma.val =
isqrt((quantStepSizeluma.val * quantStepSizeluma.val) / weight[@]);
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