

On the integration between MIV and V-PCC

m51044

Danillo Graziosi, Alexandre Zaghetto, Ali Tabatabai US Research Center

Oct 6, 2019

Copyright 2018 Sony Corporation

SUMMARY

Integration between V-PCC and MIV

- Syntax changes in V-PCC to accommodate MIV contex
- Occupancy Map generation
- Embedded occupancy map in geometry video
- Geometry Image Conversion
- 16 \rightarrow 10 bit conversion
- Unified Camera Model y_w
- V-PCC x MIV cameras
- Results
- Conclusion

 Z_{Λ}

<pre>vpcc_parameter_set() {</pre>	Descriptor
profile_tier_level()	
camera_parameters()	
vpcc_sequence_parameter_set_id	u(4)
vpcc_atlas_count_minus1	u(6)

V-PCC and MIV syntax (differences from V-PCC highlighted in green)

vpcc_parameter_set() {	Descriptor
profile tier level()	
camera_parameters()	
vpcc_sequence_parameter_set_id	u(4)
vpcc_atlas_count_minus1	u(6)
for(j = 0; j < vpcc_atlas_count_minus1 + 1; j++) {	
vpcc_frame_width[j]	u(16)
vpcc_frame_height[j]	u(16)
vpcc_avg_frame_rate_present_flag[j]	u(1)
if(vpcc_avg_frame_rate_present_flag[j])	
vpcc_avg_frame_rate[j]	u(16)
vpcc_map_count_minus1[j]	u(4)
if(vpcc_map_count_minus1[j] > 0)	
vpcc_multiple_map_streams_present_flag[j]	u(1)
vpcc_map_absolute_coding_enabled_flag[j][0] = 1	
for(i = 0; i < vpcc_map_count_minus1[j]; i++) {	
vpcc_map_absolute_coding_enabled_flag[j][i + 1]	u(1)
<pre>if(vpcc_map_absolute_coding_enabled_flag[j][i + 1] = = 0) {</pre>	
if(i > 0)	
vpcc_map_predictor_index_diff [j][i + 1]	ue(v)
else	
vpcc_map_predictor_index_diff[j][i + 1] = 0	
}	
}	
vpcc_raw_patch_enabled_flag[j]	u(1)
if(vpcc_raw_patch_enabled_flag[j])	
vpcc_raw_separate_video_present_flag[j]	u(1)
occupancy_information(j)	
geometry_information(j)	
attribute_information(j)	
}	
byte_alignment()	
}	

occupancy_information(atlas_id) {	Descriptor
oi_occupancy_map_embedded_flag[atlas_id]	u(1)
if(oi_occupancy_map_embedded_flag[atlas_id]) {	
<pre>oi_occupancy_map_embedded_threshold[atlas_id]</pre>	u(8)
} else {	
oi_occupancy_codec_id[atlas_id]	u(8)
oi_lossy_occupancy_map_compression_threshold[atlas_id]	u(8)
oi_occupancy_nominal_2d_bitdepth_minus1[atlas_id]	u(5)
oi_occupancy_MSB_align_flag[atlas_id]	u(1)
}	
} geometry_information(atlas_id) {	Descriptor
<pre>} geometry_information(atlas_id) { gi_geometry_codec_id[atlas_id]</pre>	Descriptor u(8)
<pre>} geometry_information(atlas_id) { gi_geometry_codec_id[atlas_id] gi_geometry_nominal_2d_bitdepth_minus1[atlas_id]</pre>	Descriptor u(8) u(5)
<pre>} geometry_information(atlas_id) { gi_geometry_codec_id[atlas_id] gi_geometry_nominal_2d_bitdepth_minus1[atlas_id] gi_geometry_MSB_align_flag[atlas_id]</pre>	Descriptor u(8) u(5) u(1)
<pre> geometry_information(atlas_id) { gi_geometry_codec_id[atlas_id] gi_geometry_nominal_2d_bitdepth_minus1[atlas_id] gi_geometry_MSB_align_flag[atlas_id] gi_geometry_3d_coordinates_bitdepth_minus1[atlas_id] </pre>	Descriptor u(8) u(5) u(1) u(5)
<pre>} geometry_information(atlas_id) { gi_geometry_codec_id[atlas_id] gi_geometry_nominal_2d_bitdepth_minus1[atlas_id] gi_geometry_MSB_align_flag[atlas_id] gi_geometry_3d_coordinates_bitdepth_minus1[atlas_id] if(vpcc_raw_separate_video_present_flag[atlas_id])</pre>	Descriptor u(8) u(5) u(1) u(5)
<pre>} geometry_information(atlas_id) { gi_geometry_codec_id[atlas_id] gi_geometry_nominal_2d_bitdepth_minus1[atlas_id] gi_geometry_MSB_align_flag[atlas_id] gi_geometry_3d_coordinates_bitdepth_minus1[atlas_id] if(vpcc_raw_separate_video_present_flag[atlas_id]) gi_raw_geometry_codec_id[atlas_id]</pre>	Descriptor u(8) u(5) u(1) u(5)
<pre> geometry_information(atlas_id) { gi_geometry_codec_id[atlas_id] gi_geometry_nominal_2d_bitdepth_minus1[atlas_id] gi_geometry_MSB_align_flag[atlas_id] gi_geometry_3d_coordinates_bitdepth_minus1[atlas_id] if(vpcc_raw_separate_video_present_flag[atlas_id]) gi_raw_geometry_codec_id[atlas_id] gi_geometry_range_compression_flag[atlas_id] </pre>	Descriptor u(8) u(5) u(1) u(5) u(1) u(5)
<pre> geometry_information(atlas_id) { gi_geometry_codec_id[atlas_id] gi_geometry_nominal_2d_bitdepth_minus1[atlas_id] gi_geometry_MSB_align_flag[atlas_id] gi_geometry_3d_coordinates_bitdepth_minus1[atlas_id] if(vpcc_raw_separate_video_present_flag[atlas_id]) gi_raw_geometry_codec_id[atlas_id] if(gi_geometry_range_compression_flag[atlas_id]) </pre>	Descriptor u(8) u(5) u(1) u(5) u(1) u(5)
<pre> geometry_information(atlas_id) { gi_geometry_codec_id[atlas_id] gi_geometry_nominal_2d_bitdepth_minus1[atlas_id] gi_geometry_MSB_align_flag[atlas_id] gi_geometry_3d_coordinates_bitdepth_minus1[atlas_id] if(vpcc_raw_separate_video_present_flag[atlas_id]) gi_raw_geometry_codec_id[atlas_id] if(gi_geometry_range_compression_flag[atlas_id]) if(gi_geometry_range_compression_flag[atlas_id]) if(gi_geometry_range_compression_flag[atlas_id]) gi_range_convertion_offset[atlas_id]) </pre>	Descriptor u(8) u(5) u(1) u(5) u(1) u(1) u(1) u(8) u(1) u(8) u(1)

S

PCC/MIV occupancy map harmonization

Added syntax element to indicate if occupancy map is embedded in geometry streams or not

occupancy_information(atlas_id) {	Descriptor
oi_occupancy_map_embedded_flag[atlas_id]	u(1)
if(oi_occupancy_map_embedded_flag[atlas_id]) {	
oi_occupancy_map_embedded_threshold[atlas_id]	u(8)
} else {	
oi_occupancy_codec_id[atlas_id]	u(8)
oi_lossy_occupancy_map_compression_threshold[atlas_id]	u(8)
oi_occupancy_nominal_2d_bitdepth_minus1[atlas_id]	u(5)
oi_occupancy_MSB_align_flag[atlas_id]	u(1)
}	

This allows to encode the occupancy map in both methods exactly the same, but MIV might consider the advantages of sending the occupancy map explicitly.

OVD generation

oi_occupancy_map_embedded_flag[atlas_id] = 0

oi_occupancy_map_embedded_flag[atlas_id] = 1

if (GVD[0][x][y] < oi_occupancy_map_embedded_threshold[atlas_id])</pre>

PCC/MIV geometry conversion harmonization

Added syntax element to indicate if the range of the depth image was compressed or not (otherwise assume depth slicing)

In MIV, depth is represented from $3D \rightarrow 2D$ by range compression. Decoded bit depth is always less than the nominal bit depth Offset is used to reserve values to embed occupancy maps in geometry? In PCC, depth is represented from $3D \rightarrow 2D$ by range slicing. SC Range compression can also be done with the current V-PCC syntax (see m51170, based on proposal m39342 from Intel)

n(atlas_id) {	Descriptor
c_id[atlas_id]	u(8)
<pre>inal_2d_bitdepth_minus1[atlas_id]</pre>	u(5)
_align_flag[atlas_id]	u(1)
<pre>oordinates_bitdepth_minus1[atlas_id]</pre>	u(5)
ate_video_present_flag[atlas_id])	
<pre>v_geometry_codec_id[atlas_id]</pre>	u(8)
e_compression_flag[atlas_id]	<mark>u(1)</mark>
nge_compression_flag[atlas_id])	
<pre>ige_convertion_offset[atlas_id]</pre>	<mark>u(8)</mark>

Camera Model (differences from m49590 highlighted in green)

<pre>camera_params_list() {</pre>	Descriptor				
cpl_explicit_projection_info_enabled_flag	u(1)				
if (cpl_explicit_projection_info_enabled_flag) {					
cpl num cameras minus1	u(16)				
cpl cam pos x granularity	u(32)				
cpl cam pos v granularity	u(32)				
cpl cam pos z granularity	u(32)	camera_intrinsics(_equalFlag_numCamerasMinus1_) {	Descriptor	depth_guantization(equalFlag_numCamerasMinus1) {	Descriptor
cnl vaw nitch roll present flag	<u>u(32)</u>	for $(y = 0; y < =; y++)$	Descriptor	for $(y = 0; y < =; y++)$	
cpl_gaw_pitch_flog[i]	$\frac{u(1)}{u(1)}$	$if (v = 0 equalFlag == 0) \{$		$\frac{1}{10} (v = 0, v = 0, v = 0) $	
cpl_cam_scamg_nag[1]	<u>u(1)</u>	cam_type [v]	u(8)	quantization_law[v]	u(8)
for (i = 0; i < = onl num compress minus 1; i +)	u(1)	projection_plane_width[v]	u(<mark>32</mark>)	if (quantization_law[v] == 0) {	
$\frac{101(1-0,1<-cpt_inum_cameras_inimus_1,1++)}{101(1-0,1<-cpt_inum_cameras_inimus_1,1++)}$		projection_plane_height[v]	u(<mark>32</mark>)	depth_near[v]	u(32)
ii (cam_id_present_iiag)		cpl_cam_reverse_depth_flag[i]	<mark>u(1)</mark>	depth_far[v]	u(32)
	u(16)	<pre> cpl_cam_projection_mode_flag[i]</pre>	<mark>u(1)</mark>	}	
else		if (cam_type[v] == 0) {		} else {	
cpl_cam_view_id[i] = i		erp_phi_min[v]	u(32)	$\begin{array}{c} \text{quantization}_\text{law}[v] = \text{quantization}_\text{law}[v] \\ \text{depth} \text{pear}[v] = \text{depth} \text{pear}[0] \\ \end{array}$	
cpl_cam_use_OMAF_coordinate_system_flag[i]	u(1)	erp_phi_max[v]	u(32)	$\frac{depun_near[v] - depun_near[v]}{depth_far[v] - depth_far[v]}$	
cpl_cam_pos_x[i]	u(32)	erp_theta_min[v]	u(32)		
cpl_cam_pos_y[i]	u(32)	erp_theta_max[v]	u(32)	}	
cpl_cam_pos_z[i]	u(32)	$\begin{cases} \text{else if } (\text{cam_type}[v] = = 1) \\ \text{cubic map type}[v] \end{cases}$	(<u>8</u>)	}	
if (cpl_yaw_pitch_roll_present_flag) {		else if (cam_type[v] = = 2) {	u(8)		
cpl cam vaw[i]	u(32)	perspective focal hor[v]	u(32)		
cpl cam pitch[i]	u(32)	perspective_focal_ver[v]	u(32)		
cpl cam roll[i]	u(32)	perspective_center_hor[v]	u(32)		
}		perspective_center_ver[v]	u(32)		
if (cnl_cam_scaling_flag) {		}			
cnl cam rot scale v[i]	u(3 2)	else {			
$cpl_cam_rot_scale_x[i]$	u(32)	$= cam_type[v] = cam_type[0]$			
cpi_cani_rot_scale_y[1]	u(32)				
	u(<i>32)</i>	$projection_prane_nergint[v] = projection_prane_nergint[v]$			
		$\frac{\text{erp}_p\text{m}_m\text{m}_v}{\text{erp}_p\text{m}_m\text{m}_v} = \frac{\text{erp}_p\text{m}_m\text{m}_v}{\text{m}_v}$			
	(1)	$= erp_theta_min[v] = erp_theta_min[0]$			
cpl_intrinsic_params_equal_flag	u(1)				
camera_intrinsics(cpl_intrinsic_params_equal, cpl_num_ cameras_minus1)		cubic_map_type[v] = cubic_map_type[0]			
cpl_depth_quantization_params_equal_flag	u(1)	perspective_focal_hor[v] = perspective_focal_hor[0]			
depth_quantization(cpl_depth_quantization_equal_flag, cpl_num_ cameras_minus1)		perspective_focal_ver[v] = perspective_focal_ver[0]			
}		perspective_center_hor[v] = perspective_center_hor[0]			
else {		perspective_center_ver[v] = perspective_center_ver[v]			
cpl_45degree_projection_patch_enabled_flag	u(1)	}			
cpl_num_cameras_minus1 =		}			
cpl_45degree_projection_patch_enabled_flag ? 6 : 10					
$\left. \begin{array}{cccccccccccccccccccccccccccccccccccc$					
}					
SONY Oct 6, 2019 US Research Center ©	Copyright 2018				

V-PCC camera model syntax elements:

- **Cluster Index**
- U1,V1,D1
- sizeU1,sizeV1,sizeD1

Camera Model

V-PCC (object-centric)

Orthographic cameras placed at the origin of the world coordinate system (OpenGL model), with screen size equals to the size of the 3D bounding box

MIV (scene-centric)

MIV camera model syntax elements: **Extrinsic parameters (XYZ-Position,** Yaw, Pitch, Roll) Intrinsic Parameters (focal distance, window size, principal point, etc.)

Near/far planes

Perspective/omnidirectional cameras placed at any position in the 3D space following OMAF coordinate system

V-PCC point reconstruction

MIV Atlas point reconstruction (perspective camera)

MIV Atlas point reconstruction (ERP camera)

MIV Patch point reconstruction (perspective camera)

MIV Patch point reconstruction (ERP camera)

Atlas \rightarrow Patch

Syntax: Uo,Vo, SizeUo,SizeVo, orientation (rotation+flip)

Different syntax elements, this should be aligned if integration occurs

PATCH_ORIENTATION_ROT270 PATCH_ORIENTATION_ROT180 PATCH_ORIENTATION_ROT90 PATCH_ORIENTATION_MROT180 PATCH_ORIENTATION_SWAP PATCH_ORIENTATION_MIRROR PATCH_ORIENTATION_MROT90 (5)

//no flip, upright	(0
//no flip, ccw	(1
//no flip, ht	(2
//no flip, cw	(3
//flip, upright	(4
//flip, ccw	(5
//flip, ht	(6

x	Identifier	Rotation(x)	Offset(x)
0	FPO_NULL	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0\\ 0\end{bmatrix}$
1	FPO_SWAP	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0\\ 0\end{bmatrix}$
2	FPO_ROT90	$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$	[Patch2dSizeY[p] 0
3	FPO_ROT180	$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$	[Patch2dSizeX[p] [Patch2dSizeY[p]]
4	FPO_ROT270	$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$	[0 [Patch2dSizeX[p]]
5	FPO_MIRROR	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$	[Patch2dSizeX[p] 0
6	FPO_MROT90	$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$	[Patch2dSizeY[p] [Patch2dSizeX[p]]
7	FPO_MROT180	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	[0 Patch2dSizeY[p]]

Patch \rightarrow Screen

Syntax: U1, V1

projection_plane_width, projection_plane_height, gi_geometry_3d_coordinates_bitdepth_minus1, projection_mode, D1

Normalized Device Coordinate -> Camera

Camera Intrinsics

Orthographic Camera Model

Normalized Device Coordinate -> Camera

Camera Intrinsics *

Perspective Camera (with reversed depth/ disparity)

$\begin{bmatrix} W_{/2f_x} \\ 0 \end{bmatrix}$	$0\\H_{/2f_y}$	$\begin{array}{c} 0 \frac{W/_2 - p_x}{f_x} \\ 0 \frac{H/_2 - p_y}{f} \end{array}$
0 0	0 0	$\begin{bmatrix} \mathbf{J}_{y} \\ 0 & -1 \\ (\mathbf{Z}_{N} - \mathbf{Z}_{F}) / (\mathbf{Z}_{F} * \mathbf{Z}_{N}) & -1 / \mathbf{Z}_{F} \end{bmatrix}$

Normalized Device Coordinate -> Camera

Camera Intrinsics *

- **Omni-directional camera**
 - Orthogonal camera with reversed depth + Spherical to cartesian conversion **>>**

Camera \rightarrow World

Camera extrinsics:

cpl cam scaling y, cpl cam scaling z

Coding MIV content with EE2.4 (5 frames only)

Intel Frog sequence

MIV Atlas generation

V-PCC packing/encoding/3D reconstruction

SONY

Bitstream stat:

Header:	16 B	128 b	
vpccUnitSize[VP0	CC_SPS]:	890 B	7120 b
vpccUnitSize[VP0	CC_PDG]:	7261 B	58088
vpccUnitSize[VPC	C_OVD]:	οВ	o b ((
vpccUnitSize[VPC	CC_GVD]:	1401521 B	1121216
vpccUnitSize[VP0	C_AVD]:	2720282	B 21762
TotalMetadata:	832	7 B 666 ⁻	16 b
TotalGeometry:	14014	41 B 11211	528 b
TotalTexture:	272020	2 B 21761	616 b
Total:	4129970 B	33039760	b

)

Ocm video = 0 B) 68 b (Geo video = 1401441 B + 0 B + 0 B + 0 B) 2256 b (Tex video = 2720202 B + 0 B)

Coding MIV content with EE2.4 (5 frames only)

Classroom sequence

MIV Atlas generation

V-PCC packing/encoding/3D reconstruction

Bitstream stat:

SONY

o b (Ocm video = οB) 0 B + 0 B + οB) **ο** B)

Conclusion

- We showed here that there are several similarities between both MIV and V-PCC, whereas MIV content can be interpreted as perspective or ERP cameras using reversed depth in camera space, while V-PCC cameras can be considered as orthographic cameras with depth in world space.
- V-PCC syntax could be considered in MIV case for a more flexible coding approach. For example, MIV patch generation could be done per frame, occupancy map with pixel precision could also be adopted.
- We recommend to continue the study, and look for more opportunities to improve the unification of both approaches.

