INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2019/m52391
January 2020, Brussels, BE



	Source
	Panasonic corporation

	Status
	Input document

	Title
	[G-PCC] [new proposal] The modification of RAHT process to support 1 point coding in TMC13

	Author
	Toshiyasu Sugio


Abstract

In this contribution, the modification of RAHT process is proposed to support 1 point coding. It is confirmed that modified method can encoder and decode the point cloud which includes only 1 point in a slice.
Issue and modification

The RAHT process was modified to support 1 point coding by skipping RAHT transform proposed in [1] and it was implemented into TMC13v6. However, this aspect has not been reflected into new RAHT design so that the encoder could not generate a proper bitstreams in case of total number of point equal to 1 in a slice. In this contribution, we will propose to fix this issue with the same scheme.

In the proposal, RAHT transform and inverse transform is skipped in case of total number of point equal to 1. Instead of applying RAHT transform, the original attribute value is quantized and encoded directly in encoder side, while the decoded quantized value is scaled and copied into reconstructed data in decoder side.

The following are proposed software modification on top of TMC13v8. The yellow highlighted part would be suggested to be added to the function “uraht_process “ in RAHT.cpp.
-----------------------------------------------------
template<bool isEncoder>
void
uraht_process(
  bool raht_prediction_enabled_flag,
  const std::vector<Quantizers>& quantLayers,
  int numPoints,
  int numAttrs,
  int64_t* positions,
  int* attributes,
  int32_t* coeffBufIt)
{
  // coefficients are stored in three planar arrays.  coeffBufItK is a set
  // of iterators to each array.
  int32_t* coeffBufItK[3] = {
    coeffBufIt,
    coeffBufIt + numPoints,
    coeffBufIt + numPoints * 2,
  };

  if (numPoints == 1) {
    // quant layer selection
    const auto& quant = *quantLayers.begin();

    for (int k = 0; k < numAttrs; k++) {
      auto& q = quant[std::min(k, int(quant.size()) - 1)];
      if (isEncoder) {
        auto coeff = attributes[k];
        assert(coeff <= INT_MAX && coeff >= INT_MIN);
        *coeffBufItK[k]++ = coeff =
          q.quantize(coeff << kFixedPointAttributeShift);
        attributes[k] =
          divExp2RoundHalfUp(q.scale(coeff), kFixedPointAttributeShift);
      }
      else {
        int64_t coeff = *coeffBufItK[k]++;
        attributes[k] =
          divExp2RoundHalfUp(q.scale(coeff), kFixedPointAttributeShift);
      }
    }
    return;
  }

  std::vector<UrahtNode> weightsLf, weightsHf;
  std::vector<int> attrsLf, attrsHf;
-----------------------------------------------------

The following is proposed text modification based on [2]. The yellow highlighted part would be suggested to be added to the section 8.3.1.1.
-----------------------------------------------------
[bookmark: _Ref429522][bookmark: _Toc4055518][bookmark: _Toc6215359][bookmark: _Toc12888325][bookmark: _Toc24731169]8.3.1	Region adaptive hierachical transform decoding process
8.3.1.1	General
The output of this process is the array PointsAttr with elements PointsAttr[ i ][ cIdx ] with i = 0 .. PointCount − 1, and cIdx = 0 .. AttrCnt − 1.  Each element with index i of PointsAttr is associated with a position given by the array PointPos with the same index i.
The variable CoeffIdx, specifying a current position in the decoded values array, is initialised to 0.
If PointCount equal to 1, the following applies:
· The variable NumRahtLevels, specifying the number of 3D transform levels, is set equal to 1
· The scaling process for RAHT coefficients (8.3.1.5) is invoked for each component cIdx in the range 0 .. AttrCnt − 1, with the single-element coeff set equal to value[ cIdx ][ CoeffIdx ], the 3D transform level lvl set equal to 0, and the variable cIdx as inputs.  The reconstructed samples of the output array PointAttr[ 0 ][ cIdx ] is set equal to the single-element output array of scaled transform coefficients d.
Otherwise, the following applies:
The array Weights, specifying transform coefficient weights, and the variable NumRahtLevels, specifying the number of 3D transform levels, are derived according to the RAHT weights derivation process (8.3.1.2).
-----------------------------------------------------

Experimental results

Proposed modification was implemented on TMC13v8 software and tested under all conditions in CTC [3]. The computing platform is Linux 64bits and the executables were compiled on 64-bit Linux with gcc 5.4.2. 
[bookmark: _GoBack]Table 1 shows the result of this modification. It showed no difference in CTC condition because total number of point in a slice is larger than 1 in CTC condition. Detailed result is included in the attached excel sheet (pcc-tmc3v8.0_octree_raht_vs_m52391.xlsm).
We also tested modified source code with input point cloud which includes only 1 point and confirmed that it could be encoded and decoded correctly.

Table 1: Summarized result of this proposal with RAHT compared to TMC13v8
[image: ]

Conclusion 

In this contribution, the modification of RAHT process was proposed to support 1 point coding. It was confirmed that modified method could encoder and decode the point cloud which includes only 1 point in a slice. Based on this result, it is recommended that proposed modification would be adopted in next G-PCC specification and TMC13 software.
[bookmark: _Ref510806353]References
[1] [bookmark: _Ref28274147] "[G-PCC] Bug report on binary tree based LoD and RAHT in TMC13", ISO/IEC JTC1/SC29/WG11 Doc. m47405, Geneva, CH, March 2019
[2] [bookmark: _Ref13231426]“G-PCC Future Enhancements” ISO/IEC JTC1/SC29 WG11 Doc. N18887, Geneva, CH, October 2019
[3] [bookmark: _Ref29331361]“Common Test Conditions for PCC” ISO/IEC JTC1/SC29 WG11 Doc. N18883, Geneva, CH, October 2019
image1.emf
Luma Chroma Cb Chroma Cr Reflectance

Cat1-A average 0.0% 0.0% 0.0%

Cat1-B average 0.0% 0.0% 0.0%

Cat3-fused average 0.0% 0.0% 0.0% 0.0%

Cat3-frame average 0.0%

Overall average 0.0% 0.0% 0.0% 0.0%

Avg. Enc Time [%]

Avg. Dec Time [%]

Luma Chroma Cb Chroma Cr Reflectance D1 D2

Cat1-A average 0.0% 0.0% 0.0% 0.0% 0.0%

Cat1-B average 0.0% 0.0% 0.0% 0.0% 0.0%

Cat3-fused average 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Cat3-frame average 0.0% 0.0% 0.0%

Overall average 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Avg. Enc Time [%]

Avg. Dec Time [%]

100%

#NUM!

100%

100%

C2_ai

lossy geometry, lossy attributes [all intra]

End-to-End BD‑AttrRate [%] Geom. BD‑TotGeomRate

C1_ai

lossless geometry, lossy attributes [all intra]

End-to-End BD‑AttrRate [%]


