[bookmark: _Ref429522][bookmark: _Toc4055518][bookmark: _Toc6215359][bookmark: _Toc12888325][bookmark: _Toc24731169][bookmark: _Toc353798250][bookmark: _GoBack]8.3.1	Region adaptive hierachical transform decoding process
8.3.1.1	General
The output of this process is the array PointsAttr with elements PointsAttr[i][cIdx] with i = 0 .. PointCount − 1, and cIdx = 0 .. AttrCnt − 1. Each element with index i of PointsAttr is associated with a position given by the array PointPos with the same index i.
The variable CoeffIdx, specifying a current position in the decoded values array, is initialised to 0.
If PointCount equal to 1, the following applies:
· The variable NumRahtLevels, specifying the number of 3D transform levels, is set equal to 1
· The scaling process for RAHT coefficients (8.3.1.5) is invoked for each component cIdx in the range 0 .. AttrCnt − 1, with the single-element coeff set equal to value[cIdx][CoeffIdx], the 3D transform level lvl set equal to 0, and the variable cIdx as inputs. The reconstructed samples of the output array PointAttr[0][cIdx] is set equal to the single-element output array of scaled transform coefficients d.
Otherwise, the following applies:
The array Weights, specifying transform coefficient weights, and the variable NumRahtLevels, specifying the number of 3D transform levels, are derived according to the RAHT weights derivation process (8.3.1.2).
Reconstruction proceeds level by level from the root of the transform tree to the leaves, each using the reconstruction of the previous level.
For each 3D transform level in the descending range lvl = NumRahtLevels − 1 .. 0, the following applies:
· The variable inheritDc is derived according to the transform level. For the first 3D transform level, inheritDc is set equal to 0. Otherwise, for subsequent transform levels, inheritDc is set equal to 1.
· The variable RahtPredictionEnabled is derived as follows:
RahtPredictionEnabled = inheritDc && raht_prediction_enabled_flag.
· The reconstruction process for a single RAHT level is invoked with the variable lvl set equal to 3 × lvl, and inheritDc as inputs. The output is the array recon with elements recon[x][y][z][cIdx].
· The array PrevRecon, specifying DC coefficients reconstructed from a transform level for use in a subsequent level is set equal to the array recon.
The reconstructed samples of the output array PointAttr[i][cIdx] are derived as follows with i = 0 .. PointCount − 1:
The point position variables (xPt, yPt, zPt) are set equal to PointPos[i][j], with j = 0 .. 2 respectively.
If Weights[0][xPt][yPt][zPt] is equal to 1, the following applies:
for(cIdx = 0; cIdx < AttrCnt; cIdx++)
 PointAttr[i][cIdx] = DivExp2RoundHalfInf(recon[xPt][yPt][zPt], 15)
Otherwise, Weights[0][xPt][yPt][zPt] is greater than 1, the following process is used to reconstruct samples PointAttr[i + j][cIdx] for j = i .. Weights[0][xPt][yPt][zPt] − 1:
The (AttrCnt)×(2) sized array x is initialised as follows:
for (cIdx = 0; cIdx < AttrCnt; cIdx++)
 x[cIdx][0] = recon[xPt][yPt][zPt]
For each wi in the descending range Weights[0][xPt][yPt][zPt] − 1 .. 1, the following applies:
The scaling process for RAHT coefficients is invoked for each component cIdx in the range 0 .. AttrCnt − 1, with the single-element coeff set equal to value[cIdx][CoeffIdx], the 3D transform level lvl set equal to 0, and the variable cIdx as inputs. The array element x[cIdx][1] is set equal to the single-element output array of scaled transform coefficients d.
CoeffIdx is incremented by 1.
For each component cIdx in the range 0 .. AttrCnt − 1, the following applies:
The inverse two-point transform process is invoked with the array x[cIdx][j] with j = 0 .. 1, and the array w equal to { wi, 1 } as inputs. The output is the two-element array r.
The value of x[cIdx][0] is replaced by r[0]
The output PointAttr[i + wi][cIdx] is derived as follows:
PointAttr[i + wi][cIdx] = DivExp2RoundHalfInf(x[1], 15)
The ouput PointAttr[i][cIdx] for cIdx = 0 .. AttrCnt − 1 is derived as follows:
PointAttr[i][cIdx] = DivExp2RoundHalfInf(x[0], 15)

16	© ISO/IEC 2019 – All rights reserved
© ISO/IEC 2019 – All rights reserved	15
