[bookmark: _Toc353798250][bookmark: _GoBack]7.3.2.4	Attribute parameter set syntax
	attribute_parameter_set( ) {
	Descriptor

		aps_attr_parameter_set_id
	ue(v)

		aps_seq_parameter_set_id
	ue(v)

		attr_coding_type
	ue(v)

		aps_attr_initial_qp
	ue(v)

		aps_attr_chroma_qp_offset
	se(v)

		aps_slice_qp_delta_present_flag
	u(1)

		LodParametersPresent = ( attr_coding_type  = =  0 | | attr_coding_type  = =  2 ) ? 1 : 0
	

		if( LodParametersPresent) {
	

			lifting_num_pred_nearest_neighbours
	ue(v)

			lifting_search_range_minus1
	ue(v)

			lifting_num_detail_levels_minus1 
[Ed. The V7.0 code use the variable without minus1. It should be aligned]
	ue(v)

			for( k = 0; k < 3; k++ )
	

				lifting_neighbour_bias[ k ]
	ue(v)

			if ( attr_coding_type  = =  2 )
	

				lifting_scalability_enabled_flag
	u(1)

			if ( ! lifting_scalability_enabled_flag ) {
	

				if ( lifting_num_detail_levels_minus1 > 0 ) {
	

					lifting_lod_regular_sampling_enabled_flag
	u(1)

					for( idx = 0; idx <= num_detail_levels_minus1; idx++ ) {
	

						if ( lifting_lod_decimation_enabled_flag )
	

							lifting_sampling_period[ idx ]
	ue(v)

						else
	

							lifting_sampling_distance_squared[ idx ]
	ue(v)

					}
	

				}
	

				else
	

					lifting_morton_sort_skip_enabled_flag
	u(1)

			}
	

			if( attr_coding_type  = =  0 ) {
	

				lifting_adaptive_prediction_threshold
	ue(v)

				lifting_intra_lod_prediction_num_layers
	ue(v)

				lifting_max_num_direct_predictors
	ue(v)

				inter_component_prediction_enabled_flag
	u(1)

			}
	

		}
	

		if( attribute_coding_type  = =  1 ) { //RAHT
	

			raht_prediction_enabled_flag
	u(1)

			raht_depth_minus1
	ue(v)

		}
	

		aps_extension_present_flag
	u(1)

		if( aps_extension_present_flag )
	

			while( more_data_in_byte_stream( ) )
	

				aps_extension_data_flag
	u(1)

		byte_alignment( )
	

	}
	


[bookmark: _Toc528915270]7.4.2.4	Attribute parameter set semantics
aps_attr_parameter_set_id provides an identifier for the APS for reference by other syntax elements. The value of aps_attr_parameter_set_id shall be in the range of 0 to 15, inclusive.
aps_seq_parameter_set_id specifies the value of sps_seq_parameter_set_id for the active SPS. The value of aps_seq_parameter_set_id shall be in the range of 0 to 15, inclusive.
attr_coding_type indicates that the coding type for the attribute in Table 7 for the given value of attr_coding_type. The value of attr_coding_type shall be equal to 0, 1, or 2 in bitstreams conforming to this version of this Specification. Other values of attr_coding_type are reserved for future use by ISO/IEC. Decoders conforming to this version of this Specification shall ignore reserved values of attr_coding_type.
[bookmark: _Ref19417281][bookmark: _Toc17563167][bookmark: _Toc77680754][bookmark: _Toc118289057][bookmark: _Toc246350686][bookmark: _Toc287363919][bookmark: _Toc452007813][bookmark: _Toc528915323]Table 7 — Interpretation of attr_coding_type
	attr_coding_type
	coding type

	0
	Predicting Weight Lifting

	1
	Region Adaptive Hierarchical Transform (RAHT)

	2
	Fix Weight Lifting


[Ed. Need to define the consistent name for Predicting and Lifting Transform]
aps_attr_initial_qp specifies the initial value of the variable SliceQp for each slice referring to the APS. The initial value of SliceQp is modified at the attribute slice segment layer when a non-zero value of slice_qp_delta_luma or slice_qp_delta_luma are decoded. The value of aps_attr_initial_qp shall be in the range of 0 to 52, inclusive.
aps_attr_chroma_qp_offset specifies the offsets to the initial quantization parameter signalled by the syntax aps_attr_initial_qp.
aps_slice_qp_delta_present_flag equal to 1 specifies that the ash_attr_qp_delta_luma and ash_attr_qp_delta_chromachromachromachroma syntax elements are present in the ASH. aps_slice_qp_present_flag equal to 0 specifies that the ash_attr_qp_delta_luma and ash_attr_qp_delta_chroma syntax elements are not present in the ASH.
lifting_num_pred_nearest_neighbours specifies the maximum number of nearest neighbours to be used for prediction. The value of lifting_num_pred_nearest_neighbours shall be in the range of 1 to xx.
lifting_num_detail_levels_minus1 specifies the number of levels of detail for the attribute coding. The value of lifting_num_detail_levels_minus1 shall be in the range of 0 to xx.
lifting_neighbour_bias[ k ] specifies a bias used to weight the k-th components in the calculation of the euclidean distance between two points as part of the nearest neighbour derivation process.
lifting_scalability_enabled_flag equal to 1 specifies that the attribute decoding process allows the pruned octree decode result for the input geometry points. lifting_scalability_enabled_flag equal to 0 specifies that that the attribute decoding process requires the complete octree decode result for the input geometry points. When not present, the value of lifting_scalability_enabled_flag is inferred to be equal to 0. When the value of log2_trisoup_node_size is greater than 0, the value of lifting_scalability_enabled_flag shall be 0.
lifting_search_range_minus1 plus 1 specifies the search range used to determine nearest neighbours to be used for prediction and to build distance-based levels of detail. The value of lifting_search_range is derived as follows:
	lifting_search_range = lifting_search_range_minus1 + 1
lifting_lod_regular_sampling_enabled_flag equal to 1 specifies levels of detail are built by using a regular sampling strategy. lifting_lod_regular_sampling_enabled_flag equal to 0 specifies that a distance-based sampling strategy is used instead.
lifting_sampling_period[ idx ] specifies the sampling period for the level of detail idx. The value of lifting_sampling_period[ ] shall be in the range of 0 to xx.
lifting_sampling_distance_squared[ idx ] specifies the square of the sampling distance for the level of detail idx. The value of lifting_sampling_distance_squared[ ] shall be in the range of 0 to xx.
lifting_morton_sort_skip_enabled_flag equal to 1 specifies that the sorting process based on Morton code is skipped. lifting_morton_sort_skip_enabled_flag equal to 0 specifies that the sorting process based on Morton code is applied.
lifting_adaptive_prediction_threshold specifies the threshold to enable adaptive prediction. The value of lifting_adaptive_prediction_threshold[ ] shall be in the range of 0 to xx.
lifting_intra_lod_prediction_num_layers specifies number of LoD layer where decoded points in the same LoD layer could be referred to generate prediction value of target point. lifting_intra_lod_prediction_num_layers equal to num_detail_levels_minus1 plus 1 indicates that target point could refer decoded points in the same LoD layer for all LoD layers. lifting_intra_lod_prediction_num_layers equal to 0 indicates that target point could not refer decoded points in the same LoD layer for any LoD layers. lifting_intra_lod_prediction_num_layers shall be in the range of 0 to lifting_num_detail_levels_minus1 plus 1.
lifting_max_num_direct_predictors specifies the maximum number of predictorspredictor to be used for direct prediction. The value of lifting_max_num_direct_predictors shall be range of 0 to lifting_num_pred_nearest_neighbours.
The value of the variable MaxNumPredictors that is used in the decoding process as follows: 
	MaxNumPredictors = lifting_max_num_direct_predictors + 1
inter_component_prediction_enabled_flag equal to 1 specifies that the primary component of a multi component attribute is used to predict the reconstructed value of non-primary components.  inter_component_prediction_enabled_flag equal to 0 specifies that all attribute components are reconstructed independently.
raht_prediction_enabled_flag equal to 1 specifies the transform weight prediction from the neighbour points is enabled in the RAHT decoding process. raht_prediction_enabled_flag equal to 0 specifies the transform weight prediction from the neighbour points is enabled in the RAHT decoding process.
raht_depth_minus1 specifies the number of levels minus 1 of detail for RAHT. The value of depthRAHT shall be in the range of 0 to xx.
aps_extension_present_flag equal to 1 specifies that the aps_extension_data syntax structure is present in the APS syntax structure. aps_extension_present_flag equal to 0 specifies that this syntax structure is not present. When not present, the value of aps_ extension_present_flag is inferred to be equal to 0.
aps_extension_data_flag may have any value. Its presence and value do not affect decoder conformance to profiles specified in Annex A. Decoders conforming to a profile specified in Annex A.



[bookmark: _Ref524438446][bookmark: _Toc528915296]8.3.2.1	Level of Detail Generation
Inputs of this process are:
	a series of 3D points PointPos[ i ][ j ], where i is in the range of 0 to PointNum − 1, inclusive, and j in the range 0 to 2, inclusive.
	a variable levelDetailCount specifying the number of level of detail to be generated.
	an array of distances sampling [ l ], where l is in the range of 0 to levelDetailCount − 1, inclusive.
	a variable searchRange specifying the search range for level of detail generation and the nearest neighbour search.
	a variable numPredNearestNeighbours indicating the maximum number of nearest neighbours per point.
The outputs of the process are
	an array of point indexes indexes[ i ], where i is in the range of 0 to PointNum − 1, inclusive.
	a series of nearest neighbours indexes neighbours[ i ][ n ], where i is in the range of 0 to PointNum − 1, inclusive, and n in the range of 0 to numPredNearestNeighbours − 1, inclusive.
	an array of nearest neighbours count neighboursCount[ i ], where i is in the range of 0 to PointNum − 1, inclusive.
	an array of nearest neighbours squared distances neighboursDistance2[ i ][ n ], where i is in the range of 0 to PointNum − 1, inclusive, and n in the range of 0 to numPredNearestNeighbours − 1, inclusive.
	an array pointCountPerLevelOfDetail[l], where l is in the range of 0 to levelDetailCount, inclusive.
Depending on the value of lifting_lod_regular_sampling_enabled_flag, the level of detail generation process re-organizes the points into a set of refinement levels , according to a the set of Euclidian distances (i.e., lifting_lod_regular_sampling_enabled_flag equals 0) or sampling period (i.e., lifting_lod_regular_sampling_enabled_flag equals 1) specified by the array sampling [ l ].
If lifting_lod_regular_sampling_enabled_flag equals 1, the array sampling [ l ] represents squared sampling distances verifying the following condition:
sampling [ l−1 ] < sampling [ l ].
If lifting_lod_regular_sampling_enabled_flag equals 0, the array sampling [ l ] represents sampling periods verifying the following condition:
sampling [ l ] > 1.

First, if lifting_morton_sort_skip_enabled_flag equal to 0,_the point sorting process based on Morton code in clause Error! Reference source not found. is invoked with the parameter PointPos. Let Order[i] be the array of point indexes sorted according to their Morton codes and McodeUnsorted the array of unsorted Morton codes.
Next, the following procedure is applied in order to compute both the level of detail reordering and the points nearest neighbours.
unprocessedPointCount =  PointNum
for (i=0; i< unprocessedPointCount; i++) {
	unprocessedPointIndexes[ i ] = Order[ i ]
}
assignedPointCount = 0;
for (lod = 1; lod <= levelDetailCount; lod++) {
	unprocessedPointCountPerLevelOfDetail[lod] = 0;
}
unprocessedPointCountPerLevelOfDetail[0] =  PointNum;
for (lod = 0; unprocessedPointCount > 0 && lod <= levelDetailCount; lod++) {
	nonAssignedPointCount = 0;
	startIndex = assignedPointCount;
	if (lod = = levelDetailCount) { 
		--		--
		for ( i = 0; i < unprocessedPointCount; i++ ) {
			assignedPointIndexes[assignedPointCount++] = unprocessedPointIndexes[i];
		}
	} else {
		for ( i=0; i< unprocessedPointCount; i++) {
			foundAssignedPointWithinDistanceFlag = 0;
			if ( lifting_lod_regular_sampling_enabled_flag == 1) {
				foundAssignedPointWithinDistanceFlag = (i % sampling[ lod ]) != 0;
			} else {
				currentPos = PointPos[ unprocessedPointIndexes[ i ] ];
				k = 0;
				j= nonAssignedPointCount – 1;
				while (j >= 0 && k++ < lifting_scalability_enabled_flag ? 1 : lifting_search_range) {
					neighbourPos = PointPos[nonAssignedPointIndexes [j]];
					if (lifting_scalability_enabled_flag){
						d2 = (currentPos[0] – neighbourPos[ 0 ])/(1<<nodeSizeLog2) 
							+(currentPos[1] – neighbourPos[ 1 ])/(1<<nodeSizeLog2)
							+(currentPos[1] – neighbourPos[ 2 ])/(1<<nodeSizeLog2)
						if (d2  = =  0) {
							foundAssignedPointWithinDistanceFlag = 1;
							break;
						}
					} else {
					d2 = Norm2(
							currentPos[0] – neighbourPos[0],
							currentPos[1] – neighbourPos[1],
							currentPos[2] – neighbourPos[2]));
						if (d2 <= sampling[ lod ]) {
								foundAssignedPointWithinDistanceFlag = 1;
								break;
						}
					}
				}
				j− −;
			}
			if (foundAssignedPointWithinDistance == 1)
				assignedPointIndexes[assignedPointCount++] = unprocessedPointIndexes[i];
			else
				nonAssignedPointIndexes[nonAssignedPointCount++] = unprocessedPointIndexes[i];
		}
	}
	endIndex = assignedPointCount
	currentLayer = levelDetailCount – l
if( lifting_scalability_enabled_flag && lod  = =  1 && (endIndex – startIndex) > startIndex ){
		computeNearestNeighbours(PointPos, searchRange , 0, startIndex0startI, currentLayer, 			assignedPointIndexes, McodeUnsorted, numPredNearestNeighbours, nonAssignedPointCount, 		nonNssignedPointIndexes, lod -1 );
}
	computeNearestNeighbours(PointPos, searchRange , startIndex, endIndex, currentLayer, 			assignedPointIndexes, McodeUnsorted, numPredNearestNeighbours, nonAssignedPointCount, 		nonNssignedPointIndexes, lod );
	unprocessedPointCountPerLevelOfDetail[lod+1] = nonAssignedPointCount;
	unprocessedPointCount = nonAssignedPointCount;
	unprocessedPointIndexes = nonAssignedPointIndexes
}
for (i=0; i< unprocessedPointCount; i++) {
	indexes[ unprocessedPointCount− 1 – i ] = assignedPointIndexes[ i ]
}
for (lod = 0; lod <= levelDetailCount; lod++) {
	pointCountPerLevelOfDetail[lod] = unprocessedPointCountPerLevelOfDetail[levelDetailCount − lod];
}
16	© ISO/IEC 2019 – All rights reserved
© ISO/IEC 2019 – All rights reserved	15
