
INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JCTC1/SC29/WG11 MPEG/m52515
January 2020, Brussels, Belgium

Source: Apple Inc.
Status: Input document
Title: CE13.22 report on predictive geometry coding
Author(s): David Flynn davidflynn@apple.com

Khaled Mammou kmammou@apple.com

Abstract
This document reports on the compression performance of the proposed predictive geometry coder as part
of core experiment 13.22 [1, N18902].

Introduction
The proposed predictive occupancy coder [2] represents positions as nodes in a tree. The tree is traversed
depth-first, with each node having the following properties:

• A prediction mode (eg delta from parent)

• A residual that is combined with the prediction to generate the position of a single point

• A maximum of three child nodes

Four prediction modes are defined, PCM, DPCM, Linear-2 and Linear-3.

Implementation
Two implementations of the encoder (with a common decoder) are available in the mpeg128/ce13.22/
predgeom-high-latency and mpeg128/ce13.22/predgeom-low-latency branches of the CE reposi-
tory.

The decoder (and bitstream syntax) is common to both implementations. The only difference is the non-
normative encoding method.

In order to make the predictor more extensible and the code more readable, in this implementation, the
prediction generation is factored out of the coding/mode decision loop.

The encoder implementation is split into two phases for simplicity. The first phase builds the prediction tree
according to the non-normative method selected. The second phase (common to both implementations) then
encodes the tree while making the final choice of prediction mode.

High-latency encoder
The high-latency encoder uses a k-d tree of predicted point locations generated by previously encoded points.
For each point pi, the nearest prediction P (pn) is found and the corresponding relationship between pn and
pi is recorded. Predictions are then generated using pi and inserted into the k-d tree. In this manner each
point may use any of the preceding p0 . . . pi−1 points as its parent. The tree is not complete until all points
have been analysed.

1 Date saved: 2020-01-12

mpeg128/ce13.22/predgeom-high-latency
mpeg128/ce13.22/predgeom-high-latency
mpeg128/ce13.22/predgeom-low-latency


During porting to TMC13v8.0 a number of issues were detected with nanoflann (the k-d tree implementation
used by the test model) [3].

Low-latency encoder
The low-latency encoder does not make use of a k-d tree and codes points in timestamp order (when avail-
able). The prediction tree is formed by considering the last 128 points (the search range) that have been
coded. Meaning that the maximum delay before a node may be encoded is the size of the search window.

Results
To evaluate the performance of the two model encoders, comparisons are made to the TMC13v8 anchors [4]
according to the common test conditions [5].

Table 1 shows the performance of the high-latency encoder. Tables 2 and 3 show the performance of the
low-latency encoders with respective search ranges of 512 and 128.

The common test conditions attempt to apply a uniform configuration to all content types. However, some
features provide no benefit in terms of compression for some types of content – indeed, they may even be a
detriment. To provide a fairer comparison of the decoder performance, a modified anchor is produced with
the following configuration options set:1

• bitwiseOccupancyCoding: 0

• adjacentChildContextualization: 0

• intra_pred_max_node_size_log2: 0

The results of obtained from the high-latency scheme are re-presented in Table 4 using the modified anchor.

Remarks
While we have reported the performance of the system on the full test set, the method is certainly not intended
for use with dense point clouds. It does, however, offer gains on sparse map-like data. Gains associated with
LiDaR test sequences are diminished compared to those in the original contribution due to new adoptions in
TMC13v8 (QtBt in particular).

Table 1 – Performance of the high-latency encoder compared to TMC13v8.0

BPP Ratio [%] BD-Rate [Δ%] Avg. of ratio maxrssk [%] Ratio of avg. runtime [%]
Condition Class Geometry Colour Refl D1 D2 Y Cb Cr R Encoder Decoder Encoder Decoder

C1_ai cat1-A 0.0 0.0 0.0 103 97 326 70
C1_ai cat3-fused 0.0 0.0 0.0 0.0 79 90 150 32
C1_ai cat3-frame 0.0 41 27 252 48
C1_ai overall 0.0 0.0 0.0 0.0 87 81 286 60

C2_ai cat1-A 181.9 183.1 0.0 0.0 0.1 99 82 142 85
C2_ai cat1-B 66.6 66.9 92 65 166
C2_ai cat3-fused 45.9 45.6 0.0 −0.0 0.0 −0.0 100 101 144 62
C2_ai cat3-frame 23.8 23.6 −0.0 48 27 142 50
C2_ai overall 105.4 106.0 0.0! 0.0! 0.1! −0.0 90 69 152

CW_ai cat1-A 145.6 100.0 108 97 299 75
CW_ai cat1-B 108.2 79 58 174 9
CW_ai cat3-fused 90.9 100.0 100.0 79 85 151 31
CW_ai cat3-frame 99.3 100.0 41 27 260 41
CW_ai overall 109.8 100.0! 100.0 86 71 224 27

CY_ai cat1-A 0.0 0.0 0.0 108 98 296 71
CY_ai cat3-fused 0.0 0.0 0.0 0.0 79 86 155 25
CY_ai cat3-frame −0.0 41 27 285 46
CY_ai overall 0.0 0.0 0.0 −0.0 91 81 276 58

NOTE — Condition CY metrics reported using Hausdorff PSNR.

1NB, disabling the bitwise occupancy coder is a little excessive, so compression performance compared to this configuration
should be ignored

2 Date saved: 2020-01-12



Table 2 – Performance of the low-latency encoder (search range = 512) compared to TMC13v8.0

BPP Ratio [%] BD-Rate [Δ%] Avg. of ratio maxrssk [%] Ratio of avg. runtime [%]
Condition Class Geometry Colour Refl D1 D2 Y Cb Cr R Encoder Decoder Encoder Decoder

C1_ai cat1-A 0.0 0.0 0.0 99 97 162 71
C1_ai cat3-fused 0.0 0.0 0.0 0.0 82 89 79 32
C1_ai cat3-frame 0.0 33 26 188 52
C1_ai overall 0.0 0.0 0.0 0.0 83 81 156 62

C2_ai cat1-A 213.9 215.2 0.1 0.5 0.0 99 82 115 86
C2_ai cat1-B 79.8 80.2 98 65 107
C2_ai cat3-fused 53.6 53.4 −0.0 −0.0 0.0 −0.0 100 100 112 61
C2_ai cat3-frame 38.8 38.6 0.0 46 27 121 51
C2_ai overall 125.9 126.6 0.1! 0.4! 0.0! 0.0 92 69 112

CW_ai cat1-A 154.6 100.0 100 97 159 77
CW_ai cat1-B 109.8 68 58 79 10
CW_ai cat3-fused 95.1 100.0 100.0 81 88 76 29
CW_ai cat3-frame 103.7 100.0 33 26 181 43
CW_ai overall 113.0 100.0! 100.0 77 71 115 28

CY_ai cat1-A 0.0 0.0 0.0 100 98 150 72
CY_ai cat3-fused 0.0 0.0 0.0 0.0 81 88 79 25
CY_ai cat3-frame −0.0 33 26 212 47
CY_ai overall 0.0 0.0 0.0 −0.0 84 81 152 60

NOTE — Condition CY metrics reported using Hausdorff PSNR.

Table 3 – Performance of the low-latency encoder (search range = 128) compared to TMC13v8.0

BPP Ratio [%] BD-Rate [Δ%] Avg. of ratio maxrssk [%] Ratio of avg. runtime [%]
Condition Class Geometry Colour Refl D1 D2 Y Cb Cr R Encoder Decoder Encoder Decoder

C1_ai cat1-A 0.0 0.0 0.0 99 97 145 70
C1_ai cat3-fused 0.0 0.0 0.0 0.0 81 89 74 30
C1_ai cat3-frame 0.0 33 26 151 50
C1_ai overall 0.0 0.0 0.0 0.0 83 81 137 60

C2_ai cat1-A 244.0 245.7 0.0 0.1 0.2 99 82 113 85
C2_ai cat1-B 93.5 93.8 98 65 101
C2_ai cat3-fused 61.0 60.8 0.0 −0.1 0.0 −0.0 100 99 109 62
C2_ai cat3-frame 43.1 43.0 0.0 46 27 111 51
C2_ai overall 144.6 145.3 0.0! 0.1! 0.2! 0.0 92 69 107

CW_ai cat1-A 163.5 100.0 100 97 140 79
CW_ai cat1-B 111.4 68 58 72 10
CW_ai cat3-fused 98.7 100.0 100.0 81 87 76 28
CW_ai cat3-frame 104.7 100.0 33 26 155 45
CW_ai overall 115.5 100.0! 100.0 77 71 104 28

CY_ai cat1-A 0.0 0.0 0.0 100 98 145 71
CY_ai cat3-fused 0.0 0.0 0.0 0.0 81 88 73 27
CY_ai cat3-frame −0.0 33 26 187 45
CY_ai overall 0.0 0.0 0.0 −0.0 84 81 144 59

NOTE — Condition CY metrics reported using Hausdorff PSNR.

Table 4 – Performance of the high-latency encoder compared to modified anchor

BPP Ratio [%] BD-Rate [Δ%] Avg. of ratio maxrssk [%] Ratio of avg. runtime [%]
Condition Class Geometry Colour Refl D1 D2 Y Cb Cr R Encoder Decoder Encoder Decoder

C1_ai cat1-A −0.0 −0.0 −0.0 103 97 389 87
C1_ai cat3-fused −0.0 −0.0 −0.0 −0.0 99 103 244 60
C1_ai cat3-frame −0.0 41 27 316 65
C1_ai overall −0.0 −0.0 −0.0 −0.0 89 83 356 79

C2_ai cat1-A 133.0 133.9 0.0 0.0 0.1 99 82 138 98
C2_ai cat1-B 47.4 47.8 94 68 204
C2_ai cat3-fused 31.3 31.2 0.0 −0.0 0.0 −0.0 100 101 150 89
C2_ai cat3-frame 7.3 7.2 −0.0 48 27 158 72
C2_ai overall 75.2 75.7 0.0! −0.0! 0.1! −0.0 91 70 167

CW_ai cat1-A 133.0 100.0 108 97 374 91
CW_ai cat1-B 98.3 107 77 353 23
CW_ai cat3-fused 88.8 100.0 100.0 99 99 293 56
CW_ai cat3-frame 97.0 100.0 40 27 384 66
CW_ai overall 101.6 100.0! 100.0 99 80 362 48

CY_ai cat1-A −0.0 −0.0 −0.0 108 98 361 94
CY_ai cat3-fused −0.0 −0.0 −0.0 −0.0 99 99 276 52
CY_ai cat3-frame −0.0 40 27 367 65
CY_ai overall −0.0 −0.0 −0.0 −0.0 93 83 353 82

NOTE — Condition CY metrics reported using Hausdorff PSNR.

References
[1] 3DG, “CE4FE 13.22 Improvements on tree based geometry coding,” ISO/IEC JTC1/SC29/WG11, 128th

meeting, Geneva, Tech. Rep. w18902, Oct. 2019.

3 Date saved: 2020-01-12



[2] D. Flynn, A. Tourapis, and K. Mammou, “[G-PCC][New proposal] Predictive Geometry Coding,”
ISO/IEC JTC1/SC29/WG11, 128th meeting, Geneva, Tech. Rep. m51012, Oct. 2019.

[3] D. Flynn and K. Mammou, “G-PCC: Nanoflann software issues,” ISO/IEC JTC1/SC29/WG11, 129th
meeting, Brussels, Tech. Rep. m52528, Jan. 2020.

[4] 3DG, “G-PCC performance evaluation and anchor results,” ISO/IEC JTC1/SC29/WG11, 128th meeting,
Geneva, Tech. Rep. w18885, Oct. 2019.

[5] ——, “Common Test Conditions for PCC,” ISO/IEC JTC1/SC29/WG11, 128th meeting, Geneva, Tech.
Rep. w18883, Oct. 2019.

4 Date saved: 2020-01-12


	Introduction
	Implementation
	High-latency encoder
	Low-latency encoder

	Results
	Remarks

