
INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JCTC1/SC29/WG11 MPEG/m52520
January 2020, Brussels, Belgium

Source: Apple Inc.
Status: Input document
Title: G-PCC: Duplicate point handling in predictive geometry coding
Author(s): David Flynn davidflynn@apple.com

Khaled Mammou kmammou@apple.com

Abstract
The proposed octree geometry coder includes explicit support for signalling duplicate points. The previously
proposed predictive geometry coder is capable of handling duplicate points implicitly due to the signalling
of prediction residues in an arbitrary tree structure. The proposed scheme adds a duplicate point count to
each node rather than having to use multiple nodes to enumerate all the duplicated points.

Introduction
The predictive geometry scheme [1] uses a depth-first tree with each node having the following properties:

• a prediction mode (eg delta from parent)

• a residual that is combined with the prediction to generate the position of a single point, and

• a maximum of three child nodes.

In order to signal duplicate points with the currently proposed scheme, one additional node is required for
each duplicate point. The prediction mode is signalled as delta-from-parent and the residual is set to 0.

Adding a duplicate point count
For sequences with large numbers of duplicate points the inefficiency of processing a node for each duplicate
point can be reduced by adding a per-node count of the number of duplicate points.

This is signalled using an exp-golomb code as follows:

+int
+PredGeomDecoder::decodeNumDuplicatePoints()
+{
+ if (!_aed->decode(_ctxNumDupPointsGt0))
+ return 0;
+ return 1 + _aed->decodeExpGolomb(0, _ctxBypass, _ctxNumDupPoints);
+}

Encoder implementation
The current encoder implementation handles sequential duplicate points by scanning the input stream for
subsequent duplicate points:

- for (int32_t nodeIdx = 0; nodeIdx < pointCount; ++nodeIdx) {
+ for (int nodeIdx = 0, nodeIdxN; nodeIdx < pointCount; nodeIdx = nodeIdxN) {

auto& node = nodes[nodeIdx];

1 Date saved: 2020-01-11



auto queryPoint = cloud[nodeIdx];

+ // scan for duplicate points
+ node.numDups = 0;
+ for (nodeIdxN = nodeIdx + 1; nodeIdxN < pointCount; nodeIdxN++) {
+ if (queryPoint != cloud[nodeIdxN])
+ break;
+ node.numDups++;
+ }
+

Results
The proposed method has been integrated into the high-latency variant of the predictive geometry encoder
studied in CE13.22 [2].

Table 1 illustrates the performance of the proposed method relative to the CE13.22 result according to the
common test conditions [3]. Since only the QNX cat3-frame sequences contain duplicate points, Table 2
shows the per sequence results for these sequences. In both tables, results according to condition CY (near-
lossless attribute coding) are not reported since the distortion curves do not overlap sufficiently.

Table 1 – Performance of proposed duplicate point signalling relative to proposed predictive geometry coder

BPP Ratio [%] BD-Rate [Δ%] Avg. of ratio maxrssk [%] Ratio of avg. runtime [%]
Condition Class Geometry Colour Refl D1 D2 Y Cb Cr R Encoder Decoder Encoder Decoder

C1_ai cat1-A 0.0 0.0 0.0 101 100 102 98
C1_ai cat3-fused 0.0 0.0 0.0 0.0 99 100 100 95
C1_ai cat3-frame 3.5 94 99 99 102
C1_ai overall 0.0 0.0 0.0 2.4 99 100 101 99

C2_ai cat1-A 0.2 0.2 0.0 0.0 0.0 100 100 101 100
C2_ai cat1-B 0.1 0.1 100 100 104
C2_ai cat3-fused 0.1 0.1 0.0 0.0 0.0 0.0 100 100 99 97
C2_ai cat3-frame 0.1 0.1 0.0 96 101 107 101
C2_ai overall 0.1 0.1 0.0! 0.0! 0.0! 0.0 100 100 103

CW_ai cat1-A 100.1 100.0 100 100 102 101
CW_ai cat1-B 100.0 101 100 104 102
CW_ai cat3-fused 100.0 100.0 100.0 102 100 100 92
CW_ai cat3-frame 98.0 99.1 94 99 103 103
CW_ai overall 99.7 100.0! 99.5 100 100 103 101

Table 2 – Performance of proposed duplicate point signalling relative to proposed predictive geometry coder

BPP Ratio [%] BD-Rate [Δ%] Avg. of ratio maxrssk [%] Ratio of avg. runtime [%]
Condition Sequence Geometry Colour Refl D1 D2 Y Cb Cr R Encoder Decoder Encoder Decoder

C1_ai qnxadas-junction-approach 0.0 0.0 0.0 5.9 89 99 102 101
C1_ai qnxadas-junction-exit 0.0 0.0 0.0 8.4 87 98 92 96
C1_ai qnxadas-motorway-join 0.0 0.0 0.0 8.3 88 98 92 98
C1_ai qnxadas-navigating-bends 0.0 0.0 0.0 1.7 89 99 97 101

C2_ai qnxadas-junction-approach 0.1 0.1 0.0 0.0 0.0 0.0 93 106 104 109
C2_ai qnxadas-junction-exit 0.1 0.1 0.0 0.0 0.0 0.0 93 101 105 95
C2_ai qnxadas-motorway-join 0.1 0.1 0.0 0.0 0.0 0.0 93 101 103 103
C2_ai qnxadas-navigating-bends 0.1 0.1 0.0 0.0 0.0 0.0 93 102 109 102

CW_ai qnxadas-junction-approach 96.0 0.0 97.8 89 99 92 99
CW_ai qnxadas-junction-exit 95.0 0.0 95.4 87 98 93 99
CW_ai qnxadas-motorway-join 95.6 0.0 97.8 88 99 116 102
CW_ai qnxadas-navigating-bends 97.4 0.0 98.3 88 98 99 108

References
[1] D. Flynn, A. Tourapis, and K. Mammou, “[G-PCC][New proposal] Predictive Geometry Coding,”

ISO/IEC JTC1/SC29/WG11, 128th meeting, Geneva, Tech. Rep. m51012, Oct. 2019.

[2] D. Flynn and K. Mammou, “G-PCC CE13.22 report on predictive geometry coding,” ISO/IEC
JTC1/SC29/WG11, 129th meeting, Brussels, Tech. Rep. m52515, Jan. 2020.

2 Date saved: 2020-01-11



[3] 3DG, “Common Test Conditions for PCC,” ISO/IEC JTC1/SC29/WG11, 128th meeting, Geneva, Tech.
Rep. w18883, Oct. 2019.

3 Date saved: 2020-01-11


	Introduction
	Adding a duplicate point count
	Encoder implementation

	Results

