
INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JCTC1/SC29/WG11 MPEG/m52525
January 2020, Brussels, Belgium

Source: Apple Inc.
Status: Input document
Title: G-PCC: Common test conditions for multi-frame sequence coding
Author(s): David Flynn davidflynn@apple.com

Khaled Mammou kmammou@apple.com

Abstract
The current G-PCC reference software supports sequence coding where multiple frames are encoded in a
single output sequence. The current common test conditions include multi-frame sequences obtained from
LiDaR scanners. However, the common test conditions do not make use of this functionality. This contri-
bution suggests the changes necessary to enable multi-frame sequence coding.

Introduction
Using the frameCount and firstFrameNum configuration options, a single invocation of the TMC13v8 soft-
ware [1] is able to encode a sequence of source frames to produce a single compressed bitstream. Conversely,
the decoder will produce a sequence of reconstructed frames from the compressed bitstream.

The category three test data contains a number of time varying multi-frame LiDaR sequences. However,
due to the nature of the data and the default encoder configuration, directly coding these sequences using the
multi-frame functionality will fail.

Sequence bounding box and bipolar position data
The sequence parameter set contains an optional bounding box that may be used to indicate the location of
the point cloud in a larger scene (or to shift the local origin) and to determine its bounds. While the bounds
do not form part of the decoding process, the location (offset) does.

In particular, the geometry octree coder is only able to process positive integer positions. This conflicts with
the bipolar nature of 360° LiDaR data. As such, it is necessary to offset the point cloud prior to encoding
and to remove the offset afterwards. Currently, the SPS bounding box is used for this purpose.

The current method for determining the bounding box involves scanning all points for the minimum and
maximum positions. While this works for a single frame, it is not feasible for a multi frame sequence. In
such cases, either the sequence bounding box must be known a priori, or it must be omitted. Since there is
a necessary requirement to convert signed positions to unsigned, the only solution is a priori configuration.

For LiDaR data, positions are bounded by the nature of the sensor. For example, the Velodyne VLP-16
sensor used to acquire the QNX sequences has a range of approximately 100m and a ±15° vertical range.
This would result in lateral displacements of up to ±100,000mm and vertical displacements up to ±26,000mm
from the sensor origin.

Table 1 shows the sequence level bounding box determined for each category three test sequence.

Natural values for the sequence bounding box origin and size are respectively (−217,−217,−217) and
(−218,−218,−218).

1 Date saved: 2020-01-07



Table 1 – Sequence level bounding box sizes for category three content

Sequence x0 y0 z0 x1 y1 z1 w h d

ford_01_q1mm −115448 −115321 −44408 115351 115392 4080 230799 230713 48488
ford_02_q1mm −115402 −115138 −44366 114804 115467 4078 230206 230605 48444
ford_03_q1mm −115292 −114954 −44429 115589 115800 4071 230881 230754 48500
qnxadas-junction-approach −98201 −128497 −6752 124614 124323 19708 222815 252820 26460
qnxadas-junction-exit −100793 −122169 −11263 125045 128513 21598 225838 250682 32861
qnxadas-motorway-join −129494 −127322 −11205 128057 125984 27253 257551 253306 38458
qnxadas-navigating-bends −120709 −116593 −6740 123375 126566 20257 244084 243159 26997

Interaction with non-cubic octrees
Originally, the codec supported only cubic geometry volumes. However, the addition of the so-called QtBt
feature permits efficient coding of non-cubic volumes. As a result, using the configuration above results in
a significant coding loss, since the effect of QtBt is negated.

Furthermore, using a constant offset for all frames removes the opportunity to exploit variation on a per-frame
basis.

Figure 1 illustrates the distribution of bounding box dimensions for all frames in the category three LiDaR
sequences.

12 13 14 15 16 17 18 19

(a) junction-approach
12 13 14 15 16 17 18 19

(b) junction-exit
12 13 14 15 16 17 18 19

(c) motorway-join
12 13 14 15 16 17 18 19

(d) navigating-bends

12 13 14 15 16 17 18 19

(e) ford_01
12 13 14 15 16 17 18 19

(f) ford_02
12 13 14 15 16 17 18 19

(g) ford_03

Figure 1 – Histograms of per-frame ⌈Log2⌉ bounding box dimensions. x = Blue, y = Yellow, z = Green

To resolve both of these cases, the per-slice offset feature should be used to appropriately offset each slice.
The current TMC13v8 software no longer calculates this offset as part of the slice partitioning feature and
should be fixed. However, this may be worked around by disabling slice partitioning for these sequences
(slice partitioning has no effect) and forcing the slice offset to be appropriately signalled.

diff --git a/tmc3/encoder.cpp b/tmc3/encoder.cpp
index a2ea39d..6e8e997 100644
--- a/tmc3/encoder.cpp
+++ b/tmc3/encoder.cpp
@@ -146,6 +146,7 @@ PCCTMC3Encoder3::compress(

}
}

} else {
+ _sliceOrigin = quantizedInputCloud.computeBoundingBox().min;

tileMaps.emplace_back();
auto& tile = tileMaps.back();

2 Date saved: 2020-01-07



for (int i = 0; i < quantizedInputCloud.getPointCount(); i++)
@@ -154,8 +155,6 @@ PCCTMC3Encoder3::compress(

// If partitioning is not enabled, encode input as a single "partition"
if (params->partition.method == PartitionMethod::kNone) {

- // todo(df): params->gps.geom_box_present_flag = false;
- _sliceOrigin = Vec3<int>{0};

compressPartition(
quantizedInputCloud, inputPointCloud, params, callback,
reconstructedCloud);

Random access (and maintaining experiment compatibility)
In order to truly support random access in a sequential stream, it is necessary to repeat the parameter sets on
a per-frame basis. This is currently the behaviour of the TMC13v8 encoder. Maintaining this behaviour has
the additional effect of not altering the coding performance relative to single frame coding of multi-frame
sequences as has been used on the project so far.

Proposed configuration and results
The following configuration changes are proposed for the category three frame sequences:

seq_bounding_box_xyz0: '-131072, -131072, -131072'
seq_bounding_box_whd: '262143, 262143, 262143'
partitionMethod: 0

An experiment is performed according to the common test conditions [2, 3] to verify the coding performance
of the proposed configuration. Results are presented in Table 2.

Table 2 – Comparison of the proposed configuration against CTC results using octree geometry coding with LoD
attribute coding

BPP Ratio [%] BD-Rate [Δ%] Avg. of ratio maxrssk [%] Ratio of avg. runtime [%]
Condition Class Geometry Colour Refl D1 D2 Y Cb Cr R Encoder Decoder Encoder Decoder

C1_ai cat3-frame 0.0 97 100 97 98
C2_ai cat3-frame −0.2 −0.1 0.7 96 100 96 101
CW_ai cat3-frame 100.0 100.0 97 100 100 102
CY_ai cat3-frame −0.0 97 100 108 109

References
[1] 3DG, “G-PCC Test Model v8,” ISO/IEC JTC1/SC29/WG11, 128th meeting, Geneva, Tech. Rep.

w18882, Oct. 2019.

[2] ——, “G-PCC performance evaluation and anchor results,” ISO/IEC JTC1/SC29/WG11, 128thmeeting,
Geneva, Tech. Rep. w18885, Oct. 2019.

[3] ——, “G-PCC Future Enhancements,” ISO/IEC JTC1/SC29/WG11, 128th meeting, Geneva, Tech. Rep.
w18887, Oct. 2019.

3 Date saved: 2020-01-07


	Introduction
	Sequence bounding box and bipolar position data
	Interaction with non-cubic octrees
	Random access (and maintaining experiment compatibility)

	Proposed configuration and results

