INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG/m53339
April 2020, Teleconference

	Source
	Apple, Nokia, Sony

	Status
	Input contribution

	Title
	[VPCC] Tile group observations and issues in the current V-PCC specification

	Author
	Jungsun Kim, Alexis Michael Tourapis, Khaled Mammou, Lukasz Kondrad, Ali Tabatabai, Danillo Graziosi, Alexandre Zaghetto

Abstract
This contribution identifies and presents solutions to several limitations with regards to the definition and usage of tile groups in the current V-PCC specification. Observed limitations include handling of RAW and EOM patch types in auxiliary video streams as well as handling of overlapping tile groups.
Introduction
Tile groups are an essential concept of the V-PCC, and consequently the 3VC, specification. They allow partitioning an atlas into separate independent coding units, which can enable a variety of features such as random access, parallel encoding and decoding, scalable decoding, etc.
The original text for their definition was taken from the VVC specification. Although we tried to simplify the functionality compared to that of VVC, we noticed that the text currently has a few problems that need to be addressed.
In particular we have noticed the following issues:
a) RAW and EOM patches could be placed in either the same video as regular patches or in a separate, auxiliary video. Unfortunately, it appears that currently, when tile groups are used, there seems not to be a proper definition of where such patches should be placed. Ideally, such patches need to be in "separate" image regions so as to permit similar flexibility and functionality as allowed with patch information on the regular atlas.
b) The current syntax of allocating tiles to a tile group seems not able to impose the necessary constraints for disallowing two tile groups to overlap.
c) The current syntax seems to permit that the ending tile that corresponds to a tile group could be on the left but below the starting tile of that same tile group.
d) The rearrangement of tile groups using the afti_signalled_tile_group_id_flag flag, seems to add extra complexity and requires additional restrictions in the syntax, e.g. to ensure that there are no tile group collissions and that all tile groups have been indicated, for no real benefit. Reordering could in fact be achieved in a much cleaner manner when specifying each tile group.
e) There are considerable inconsistencies in sections 8 and 9 on how tile groups and patches are used. Patches are associated with tile groups but it appears in many sections that these are assumed to be atlas based. BlockToPatchMap information is, for example, derived per tile group but assumed to be atlas based when used later, while a variable AtlasBlockToPatchMap is mentioned but neither assigned or used.
In this document we present solutions to the above issues. Furthermore, we think that since in the current specification the concept of a tile is only an intermediate step for defining the final partitioning of an atlas, we could rename tiles into tiling grid partitions and tile groups to tiles. That would better align our specification's naming with other, video specifications, that also use a similar naming.
Proposed solutions
Tile Group partitioning of auxiliary video RAW and EOM patches
In the current V-PCC specification and when tile groups are used, the syntax does not seem to properly handle RAW and EOM patches that need to be placed in auxiliary videos. One simple way to handle this is to disallow such patches when tile groups are used, however that would considerably limit the functionality of V-PCC. An alternative could be expecting the same partitioning in the auxiliary video as that of the regular video that is associated with the atlas. In that case, however, there may be considerable waste in the auxiliary video data if not all tile groups utilize such partitions, while if tile groups are combined together as a secondary process and the size of the tile group auxiliary video streams was not originally properly constrained, that would imply that the location of those patches may need to be updated and such streams may need to be recreated and reencoded during this secondary process.
We propose a much simpler alternative. Instead of replicating the same partitioning in the auxiliary video as the one used for the atlas groups, we only allow auxiliary video tile groups to stack vertically. Given that unlike natural images, tiling is only utilized here for permitting some form of partitioning and parallelization and has no implications to image reconstruction quality, this makes it much easier to maintain and process such data. In such scenario, the width of all auxiliary video tile groups is expected and required to be the same, which could commonly be easily enforced in the encoder. In situations when the combination is done as a secondary process, it is much simpler to pad horizontally any auxiliary video tile groups that are of a smaller width than the maximum width of all original auxiliary video tile groups prior to such padding process. In video specifications that also support tiles, padding itself could be done using such tiling mechanisms.
After discussions with other V-PCC editors, and to also assist with scaling and interpretation of the video sub-bitstreams, a tile width parameter is also introduced that is also common for all auxiliary tiles. Furthermore, we permit a zero sized auxiliary tile group so as to better handle cases where we may wish to not add any RAW or EOM patches in an auxiliary video associated with a tile group.
Tile Group overlapping
We noticed that in the current V-PCC specification the constraints for afti_top_left_tile_idx[i] and afti_bottom_right_tile_idx_delta[i] do not seem adequate enough so as to avoid collisions and overlapping between two tile groups. One constraint that exists in the specification requires that the value of afti_top_left_tile_idx[i] shall not be equal to the value of afti_top_left_tile_idx[j] for any i not equal to j, which only guarantees that two tile groups do not overlap starting at the top-left corner of both of these partitions.
It should be a requirement for bitstream conformance that a tile group does not overlap with any partition that is associated with any other tile group in the atlas. This could be done by either including such a sentence in the specification, or by deriving the top-left and bottom right tile/partition coordinates of a tile group, TopLeftTileColumn[i], TopLeftTileRow[i], BottomRightTileColumn[i], and BottomRightTileRow[i] and specifying that there should not be any tile group j that satisfies the following properties:

TopLeftTileColumn[i] <= TopLeftTileColumn[j] <= BottomRightTileColumn[i]
or
TopLeftTileRow[i] <= TopLeftTileRow[j] <= BottomRightTileRow[i]

Tile Group partition associations
It is currently possible to have the value of afti_bottom_right_tile_idx_delta[i] correspond to a tile value that is in column that is on the left from the column that corresponds to the value of afti_top_left_tile_idx[i]. That seems confusing and wasteful especially since we permit only rectangular tile groups. We resolve this problem and also make our syntax a bit more efficient by allowing afti_bottom_right_tile_idx_delta[i] to only point to tiles/partitions that are on the right of afti_top_left_tile_idx[i] and by coding this element using a ue(v) mode.

TopLeftTileColumn[i] = afti_top_left_tile_idx[i] % (afti_num_tile_columns_minus1 + 1)
	TopLeftTileRow[i] = afti_top_left_tile_idx[i] / (afti_num_tile_columns_minus1 + 1)	
remainingTileColumns = afti_num_tile_columns_minus1 + 1 – TopLeftTileColumn[i]
	botRightTileColumnOffset = afti_bottom_right_tile_idx_delta[i] % remainingTileColumns
botRightTileRowOffset = afti_bottom_right_tile_idx_delta[i] / remainingTileColumns
	BottomRightTileColumn[i] = TopLeftTileColumn[i] + botRightTileColumnOffset
	BottomRightTileRow[i] = TopLeftTileRow[i] + botRightTileRowOffset

We should highlight that another bug that we noticed here is that the above variables were computed given afti_num_partition_rows_minus1 and not afti_num_tile_columns_minus1.

Tile Group rearrangement
The current specification allows tile groups to be rearranged in a different order from how they are defined. We believe that this functionality is completely redundant, while it adds extra complexity in the encoder and decoder for no good reason. Tile groups are defined with an initial order and then rearranged, making it necessary to also rearrange their associated elements such as TopLeftTileColumn[i], TopLeftTileRow[i], BottomRightTileColumn[i], and BottomRightTileRow[i] etc, based on this final order.
We assert that this functionality is unecessary and that in fact it could be completely emulated in our current specification by slightly modifying the tile group assignment syntax, i.e. by removing the conditional of "if (i>0)" prior to the element afti_top_left_tile_idx[i], and by intelligently assigning tile groups according to our desirable order. That is, if we wanted to define tile groups using an order starting from the right bottom corner to the left top corner, we could do so by simply specifying these tile groups in that order when we assign them. There is no need to again rearrange them with any additional syntax. This makes our syntax cleaner and eliminates the need for any remapping of any assigned parameters after reordering the tile groups.
Handling of tile groups during decoding and reconstruction
To avoid any issues with how tile groups should be handled we recommend both decoding and reconstruction processes to operate on tile/tile groups and not atlases. We would recommend removing section 8.5.6 and keeping patches of different tile groups separate. The decoding process and essential reconstruction steps, except smoothing processes, can be then described per tile group. Since though the video data might not utilize the same partitions, section 8.5.6 should be replaced with a section that "repartitions" the decoded video data into new virtual partitions based on the partitioning defined by atlas tile groups. These virtual video partitions are the ones used to extract the patch information during reconstruction. Scaling of video data is still derived based on the nominal atlas resolution and the resolution of the compressed video data, and that step is applied prior to the partitioning process. However, it might also be beneficial to define smoothing processes, especially if they are utilizing patch information, also in tile group domain.
It is recommended converting the arrays BlockToPatchMap, BlockToPatchMapWidth, and BlockToPatchMapHeight, in section 8.5.5 as local arrays (first letter converted to lower case) since they are expected to be outputs to that process and assign them to a three dimensional array when the process called, where the the first dimension is assigned to the tile group index. Alternatively, these could be converted to three dimensional arrays within section 8.5.5. This will remove the ambiguity of the relationship of these arrays with a tile group.
 Tile groups and tile naming
In the current specification we use the name "tile" for defining the partition grid that allows us to then determine the final partitions of an atlas frame. Such final partitions are named as tile groups. The partition grid is only intermediate and not used anywhere else in the VPCC decoding process.
We believe that the text could be considerably improved and simplified if we rename tiles into partitions and tile groups to tiles. That could also provide a better correspondence with video specifications that utilize the tile naming. This is purely an editorial change.
Syntax and semantic changes
Atlas frame tile information syntax
	atlas_frame_tile_information() {
	Descriptor

		afti_single_tile_in_atlas_frame_flag
	u(1)

		if(!afti_single_tile_in_atlas_frame_flag) {
	

			afti_uniform_partition_spacing_flag
	u(1)

			if(afti_uniform_partition_spacing_flag) {
	

				afti_partition_cols_width_minus1
	ue(v)

				afti_partition_rows_height_minus1
	ue(v)

			} else {
	

				afti_num_partition_columns_minus1
	ue(v)

				afti_num_partition_rows_minus1
	ue(v)

				for(i = 0; i < afti_num_partition_columns_minus1; i++)
	

					afti_partition_column_width_minus1[i]
	ue(v)

				for(i = 0; i < afti_num_partition_rows_minus1; i++)
	

					afti_partition_row_height_minus1[i]
	ue(v)

			}
	

			afti_single_partition_per_tile_flag
	u(1)

			if(!afti_single_partition_per_tile_flag) {
	

				afti_num_tiles_in_atlas_frame_minus1
	ue(v)

				for(i = 0; i < afti_num_tiles_in_atlas_frame_minus1 + 1; i++) {
	

					afti_top_left_partition_idx[i]
	u(v)

					afti_bottom_right_partition_idx_delta[i]
	ue(v)

				}
	

			}
	

		}
	

		if(asps_auxiliary_video_enabled_flag) {
	

			afti_auxiliary_video_tile_row_width_minus1
	ue(v)

			for(i = 0; i < afti_num_tiles_in_atlas_frame_minus1 + 1; i++)
	

				afti_auxiliary_video_tile_row_height[i]
	ue(v)

		}
	

	}
	

1.1.1.1 RAW patch data unit syntax
	raw_patch_data_unit(patchIdx) {
	Descriptor

		if(afti_auxiliary_video_tile_row_height[CurrTileIdx] > 0)
	

			rpdu_patch_in_auxiliary_video_flag[patchIdx]
	u(1)

		rpdu_2d_pos_x[patchIdx]
	ue(v)

		rpdu_2d_pos_y[patchIdx]
	ue(v)

		rpdu_2d_size_x_minus1[patchIdx]
	ue(v)

		rpdu_2d_size_y_minus1[patchIdx]
	ue(v)

		rpdu_3d_pos_x[patchIdx]
	u(v)

		rpdu_3d_pos_y[patchIdx]
	u(v)

		rpdu_3d_pos_z[patchIdx]
	u(v)

		rpdu_points_minus1[patchIdx]
	ue(v)

	}
	

1.1.1.2 EOM patch data unit syntax
	[bookmark: _Hlk37837952]eom_patch_data_unit(patchIdx) {
	Descriptor

		if(afti_auxiliary_video_tile_row_height[CurrTileIdx] > 0)
	

			epdu_patch_in_auxiliary_video_flag[patchIdx]
	u(1)

		epdu_2d_pos_x[patchIdx]
	ue(v)

		epdu_2d_pos_y[patchIdx]
	ue(v)

		epdu_2d_size_x_minus1[patchIdx]
	ue(v)

		epdu_2d_size_y_minus1[patchIdx]
	ue(v)

		epdu_patch_count_minus1[patchIdx]
	ue(v)

		for(i = 0; i < epdu_patch_count_minus1[patchIdx] + 1; i++) {
	

			epdu_associated_patch_idx[patchIdx][i]
	ue(v)

			epdu_points[patchIdx][i]
	ue(v)

		}
	

	}
	

Atlas frame tile information syntax
afti_single_tile_in_atlas_frame_flag equal to 1 specifies that there is only one tile in each atlas frame referring to the AFPS. afti_single_tile_in_atlas_frame_flag equal to 0 specifies that there is more than one tile in each atlas frame referring to the PPS.
afti_uniform_partition_spacing_flag equal to 1 specifies that tile partition column and row boundaries are distributed uniformly across the atlas frame and signalled using the syntax elements afti_partition_cols_width_minus1 and afti_partition_rows_height_minus1, respectively. afti_uniform_partition_spacing_flag equal to 0 specifies that tile partition column and row boundaries may or may not be distributed uniformly across the atlas frame and are signalled using the syntax elements afti_num_partition_columns_minus1 and afti_num_partition_rows_minus1 and a list of syntax element pairs afti_partition_column_width_minus1[i] and afti_partition_row_height_minus1[i]. When not present, the value of afti_uniform_partition_spacing_flag is inferred to be equal to 1.
afti_partition_cols_width_minus1 plus 1 specifies the width of the tile partition columns excluding the right-most tile column of the atlas frame in units of 64 samples when afti_uniform_partition_spacing_flag is equal to 1. The value of afti_partition_cols_width_minus1 shall be in the range of 0 to (asps_frame_width + 63) / 64 − 1, inclusive. When not present, the value of afti_partition_cols_width_minus1 is inferred to be equal to (asps_frame_width + 63) / 64 – 1.
afti_partition_rows_height_minus1 plus 1 specifies the height of the tile partition rows excluding the bottom tile partition row of the atlas frame in units of 64 samples when afti_uniform_partition_spacing_flag is equal to 1. The value of afti_partition_rows_height_minus1 shall be in the range of 0 to (asps_frame_height + 63) / 64 − 1, inclusive. When not present, the value of afti_partition_rows_height_minus1 is inferred to be equal to (asps_frame_height + 63) / 64 – 1.
afti_num_partition_columns_minus1 plus 1 specifies the number of tile partition columns partitioning the atlas frame when afti_uniform_partition_spacing_flag is equal to 0. The value of afti_num_partition_columns_minus1 shall be in the range of 0 to (asps_frame_width + 63) / 64 − 1, inclusive. If afti_single_tile_in_atlas_frame_flag is equal to 1, the value of afti_num_partition_columns_minus1 is inferred to be equal to 0. Otherwise, when afti_uniform_partition_spacing_flag is equal to 1, the value of afti_num_partition_columns_minus1 is inferred as specified in clause 6.4.1
afti_num_partition_rows_minus1 plus 1 specifies the number of tile partition rows partitioning the atlas frame when pti_uniform_tile_spacing_flag is equal to 0. The value of afti_num_partition_rows_minus1 shall be in the range of 0 to (asps_frame_height + 63) / 64 − 1, inclusive. If afti_single_tile_in_pic_flag is equal to 1, the value of afti_num_partition_rows_minus1 is inferred to be equal to 0. Otherwise, when afti_uniform_partition_spacing_flag is equal to 1, the value of afti_num_partition_rows_minus1 is inferred as specified in clause 6.4.1.
The variable NumPartitionsInAtlasFrame is set equal to (afti_num_partition_columns_minus1 + 1) * (afti_num_partition_rows_minus1 + 1).
When afti_single_tile_in_atlas_frame_flag is equal to 0, NumPartitionsInAtlasFrame shall be greater than 1.
afti_partition_column_width_minus1[i] plus 1 specifies the width of the i-th tile partition column in units of 64 samples.
afti_partition_row_height_minus1[i] plus 1 specifies the height of the i-th tile partition row in units of 64 samples.
afti_single_partition_per_tile_flag equal to 1 specifies that each tile that refers to this AFPS includes one tile partition. afti_single_partition_per_tile_flag equal to 0 specifies that a tile that refers to this AFPS may include more than one tile partition. When not present, the value of afti_single_partition_per_tile_flag is inferred to be equal to 1.
afti_num_tiles_in_atlas_frame_minus1 plus 1 specifies the number of tiles in each atlas frame referring to the AFPS. The value of afti_num_tiles_in_atlas_frame_minus1 shall be in the range of 0 to NumPartitionsInAtlasFrame − 1, inclusive. When not present and afti_single_partition_per_tile_flag is equal to 1, the value of afti_num_tiles_in_atlas_frame_minus1 is inferred to be equal to NumPartitionsInAtlasFrame − 1.
afti_top_left_partition_idx[i] specifies the tile partition index of the tile partition located at the top-left corner of the i-th tile. When not present, the value of afti_top_left_partition_idx[i] is inferred to be equal to i. The length of the afti_top_left_partition_idx[i] syntax element is Ceil(Log2(NumPartitionsInAtlasFrame) bits.
afti_bottom_right_partition_idx_delta[[i] specifies the tile partition index of the tile partition located at the bottom-right corner of the i-th tile relative to its top-left corner. When afti_single_partition_per_tile_flag is equal to 1, the value of afti_bottom_right_partition_idx_delta[[i] is inferred to be equal to 0.

The variables TopLeftTileColumn[i], TopLeftTileRow[i], BottomRightTileColumn[i], and BottomRightTileRow[i], which specify the corresponding tile column and row positions for the top left an bottom right tiles in a tile group are computed as follows:
	totalColumns = afti_num_partition_columns_minus1 + 1
	TopLeftTileColumn[i] = afti_top_left_tile_idx[i] % totalColumns
	TopLeftTileRow[i] = afti_top_left_tile_idx[i] / totalColumns	
remainingColumns = totalColumns – TopLeftTileColumn[i]
	botRightColumnOffset = afti_bottom_right_tile_idx_delta[i] % remainingColumns
botRightRowOffset = afti_bottom_right_tile_idx_delta[i] / remainingColumns
botRightTileIdx = afti_top_left_tile_idx[i] + botRightRowOffset * totalColumns +
						botRightColumnOffset
	BottomRightTileColumn[i] = TopLeftTileColumn[i] + botRightColumnOffset
	BottomRightTileRow[i] = TopLeftTileRow[i] + botRightRowOffset

It is a requirement of bitstream conformance that there shall not be a value of j, where j != i, that satisfies either one of these properties:

TopLeftTileColumn[i] <= TopLeftTileColumn[j] <= BottomRightTileColumn[i]
or
TopLeftTileRow[i] <= TopLeftTileRow[j] <= BottomRightTileRow[i]
The variables TileWidth[i] and TileHeight[i], which specify the width and height of a tile respectively, are then computed as follows:
	TileWidth[i] = 0
	TileHeight[i] = 0
	for (j= TopLeftTileColumn[i]; j <= BottomRightTileColumn[i]; j++) {
		TileWidth[i] += ColWidth[j] * 64
	}
	for (j= TopLeftTileRow[i]; j <= BottomRightTileRow[i]; j++) {
		TileHeight[i] += ColHeight[j] * 64
	}
afti_auxiliary_video_tile_row_width_minus1 plus 1 specifies the width of all auxiliary tile partitions in units of 64 samples. If afti_auxiliary_video_tile_row_width_minus1 is not present, the value of afti_auxiliary_video_tile_row_width_minus1 is inferred to be equal to 0.
afti_auxiliary_video_tile_row_height[i] specifies the height of the i-th auxiliary tile partition in units of 64 samples. If afti_auxiliary_video_tile_row_height[i] is not present, the value of afti_auxiliary_video_tile_row_height[i] is inferred to be equal to 0.
Conclusion
In this contribution we identified several issues and provided solutions relating to the specification of tile groups in the V-PCC specification. We would recommend adopting these solutions in the current specification.

