[bookmark: _GoBack]INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2020/m53533
April 2020, Alpbach, Austria

	Source
	Samsung Electronics

	Status
	Input contribution

	Title
	[V-PCC] Generation of mesh connectivity for point clouds

	Author
	Esmaeil Faramarzi, Rajan Joshi, Madhukar Budagavi

Abstract
This documents describes the steps for creating mesh connectivity information for existing point clouds used by the V-PCC activity, as well as the steps to transform Owlii’s textured meshes to 10-bit meshes with per-vertex color. Single-frame MD5 sums are provided for the Owlii meshes. The meshes produced in this manner have been used for reporting the results in m53369 [1].
Introduction
We aimed to produce dense as well as sparse meshes for testing our proposed architectures to support mesh coding using V-PCC [1-4]. This contribution describes the steps in detail to make the exact generation of those meshes reproducible by others. We used the pre-built 64-bit binary version 2020.03 of the MeshLab Sofware [5] for Windows. Using a different version of MeshLab or running on a different platform may result in slightly different results.
Dense meshes from the CTC point clouds
We first apply the filtering steps manually to one frame in MeshLab, then use the generated filtering scripts to apply the processing to all frames in a batch using the meshlabserver.exe command-line program. We ran meshlab.exe as an administrator and from the directory in which the .ply files are stored. Otherwise, we noted some issues with read/write permissions and paths.
1. Open MeshLab, then open a point cloud.
2. Estimate the normal vectors by going to the following menu: “Filters → Normals, Curvature and Orientations → Compute normals for point sets”. In the opened dialog, change the values of “Neighbor run” to 64 and “Smooth iteration” to 5. Then press “Apply” and wait until the operation finishes. Then press the “Close” button.
3. Estimate the mesh connectivities by going to “Filters → Remeshing, Simplification and Reconstruction → Surface Reconstruction: Screened Poisson”. Change the “Reconstruction Depth” to 10 and press the “Apply” button. After finishing, press the “Close” button.
4. To save the script for the above two filtering steps to the disk, go to “Filters → Show current filter script”. In the dialog, you should see only the above two filtering steps listed, otherwise remove the extra steps. Click on the “Save Script” button, save the script with a name such as “filter_surface_reconstruction.mlx”, and close the dialog after done.
5. Applying surface reconstruction using Screened Poisson generates a mesh with floating-point vertices. To use the mesh with TMC2, a script/code can be written to read a mesh ply file from the disk, round off the vertex positions to integer values, and save the mesh object back to the disk. A pseudo code is as follows:
function integerize(string meshInpPlyName, string meshOutPlyName)
{
 obj = readPly(meshInpPlyName);
 obj.vertices = round(obj.vertices);
 writePly(meshOutPlyName);
}
6. Rounding off the vertex positions turns the mesh to have some duplicated points/faces. Removing the duplicates causes some non-manifold vertices/edges to appear. Therefore, some cleaning operations are required after voxelization. To do this, open a mesh file in MeshLab, go to “Filters → Cleaning and Repairing”, select and apply the following cleaning operations in order (for simplicity we do not apply more cleaning or post processing).
a. “Remove Duplicate Vertices”
b. “Remove Duplicate Faces”
c. “Remove Unreferenced Vertices”
d. “Remove Zero Area Faces”
e. “Repair non Manifold Edges by removing faces”
f. “Repair non Manifold Vertices by splitting” (choose default value of 0 for vertex displacement ratio)
7. To save the script related to the cleanings in step 6, go to “Filters → Show current filter script”. In the dialog, make sure that only the above six filtering steps are listed, otherwise remove the extra cases. Click on the “Save Script” button, save the script with a name such as “filter_cleaning.mlx”, and close the dialog after finishing.
8. Write a script/code to apply all the above filtering steps to generate a dense mesh with integer-precision vertices from a CTC point cloud. A psudo code is as follows:
function createDenseMeshes(string pcInpPlyName, string meshOutPlyName)
{
 system(″meshlabserver.exe -i <pcInpPlyName>
 -o <meshOutPlyName>
 -m vc
 -s filter_surface_reconstruction.mlx″);
 integerize(meshOutPlyName, meshOutPlyName);
 system(″meshlabserver.exe -i <meshOutPlyName>
 -o <meshOutPlyName>
 -m vc
 -s filter_cleaning.mlx″);

Figure	1 shows snapshots of the meshes generated from the CTC point clouds. The generated meshes have no duplicated vertices or faces, unreferenced vertices, and non-manifold faces. Also, except for Queen, they have no non-manifold vertices, as shown in Table 1.

[image:] [image:] [image:]
[image:] [image:]
Figure 1. Snapshots of the 10-bit meshes generated from the CTC point clouds

	Meshes
	Frame No.
	No. of Vertices
	No. of Faces
	No. of Non-Manifold Vertices

	Longdress
	1051
	557,658
	1,113,367
	0

	Loot
	1000
	589,700
	1,177,745
	0

	Redandblack
	1450
	567,990
	1,134,492
	0

	Soldier
	536
	751,244
	1,499,171
	0

	Queen
	0
	641,305
	1,280,269
	5

Table 1. Specifications of the generated single-frame dense meshes
Sparse meshes from the Owlii meshes
To generate sparse meshes, we use Owill’s textured meshes (in obj format, accompanied with a png and a mtl files) and convert them to 10-bit meshes with per-vertex color. Another approach would be to start from the Owlii dense point clouds (generated from the textured meshes) and apply the same process as we did in Section 1.1 together with downsampling or mesh simplification to make the meshes sparse. However, the former approach is preferred since the vertices of the textured meshes are already distributed efficiently (more vertices in the area with high curvature such as face), so we do not need to take care of applying optimal non-uniform downsampling or mesh simplification.
We ran meshlab.exe as an administrator and from the directory in which the .ply files are stored. Otherwise, we noted some issues with read/write permissions and paths. The steps were as follows:
1. Open MeshLab, then open an Owlii textured mesh (in obj format).
2. Transfer the texture of the mesh to per-vertex color by going to the following menu: “Filters → Texture → Transfer Texture to Vertex Color (1 or 2 meshes)”. In the opened dialog, click the “Apply” button to apply the process using the default parameter values, then click the “Close” button when finished.
3. Save the script for the above filtering step by going to “Filters → Show current filter script”. In the dialog, make sure that only the above filtering step is listed, otherwise remove other steps. Click on the “Save Script” button and save the script with a name such as “filter_texture_to_vertex_color.mlx”, then close the dialog.
4. Scale the vertices to the 10-bit range (we use the range from 10 to 1013, slightly smaller than the full 10-bit range) and then integerize them using a code/script. A sample psudo code is as follows:
function scaleIntegerize(string meshInpPlyName, string meshOutPlyName)
{
 obj = readPly(meshInpPlyName);
 minRange = 10;
 maxRange = 1013;
 minVal = min(obj.vertices);
 maxVal = max(obj.vertices);
 obj.vertices = (obj.vertices – minVal) / (maxVal – minVal);
 obj.vertices = obj.vertices * (maxRange – minRange) + minRange;
 obj.vertices = round(obj.vertices);
 writePly(meshOutPlyName);
}
5. If not done before, go through Steps 6 and 7 of Section 1.1 to generate the script for mesh cleaning.
6. Write a script/code to apply all the above filtering/processing steps. A psudo code is as follows:
function createSparseMeshes(string meshInpObjName, string meshOutPlyName)
{
 system(″meshlabserver.exe -i <meshInpObjName>
 -o <meshOutPlyName>
 -m vc
 -s filter_texture_to_vertex_color.mlx″);
 scaleInegerize(meshOutPlyName, meshOutPlyName);
 system(″meshlabserver.exe -i <meshOutPlyName>
 -o <meshOutPlyName>
 -m vc
 -s filter_cleaning.mlx″);
Figure 2 shows snapshots of the sparse 10-bit meshes with per-vertex color created from the Owlii textured meshes. The generated meshes have no duplicated vertices or faces, unreferenced vertices, non-manifold faces or vertices. The specifications of meshes are shown in Table 2.

[image:][image:][image:][image:]
Figure 2. Snapshots of the 10-bit sparse meshes with per-vertex color generated from the Owlii’s meshes

	Meshes
	Frame No.
	No. of Vertices
	No. of Faces
	No. of Non-Manifold Vertices

	Basketball_player
	1
	19,431
	38,770
	0

	Dancer
	1
	19,353
	38,629
	0

	Exercise
	1
	19,448
	38,778
	0

	Model
	1
	19,603
	39,108
	0

Table 2. Specifications of the generated sparse meshes
MD5 Checksum
We observed that for the dense mesh generation, the same script, when run multiple times, produces slightly different results. However, for sparse meshes, the results are identical. Our conjecture is that the Poisson reconstruction step used in the generation of dense meshes may be using a random seed. We are investiating this issue further.
Table 3 demostrates the MD5 checksum values for the sparse meshes (for only the first frame).

	Mesh
	MD5 Checksum

	Basketball_player
	0baa5c2ad776f9bf321453606272b5e1

	Dancer
	5ec4596493c1a103b2f02b759a4d2974

	Exercise
	2c378274928bcf05e4df6459ed1ac8af

	Model
	d253bf3e03f9af718b87dec49c09e9f7

Table 3. Single-frame md5 checksum values for the sparse meshes
Conclusion
In this contribution, we explained in detail the steps used to generate dense meshes from the CTC point clouds, as well as sparse meshes with per-vertex color from the Owlii textured meshes. We also provide single-frame MD5 checksum values for the sparse meshes that were created. For dense meshes, the generation process, when run multiple times on identical input, produces slightly different meshes.
References
[1] m53369, “[V-PCC] Report on EE4FE 2.6 mesh coding with V-PCC,” ISO/IEC JTC1/SC29/WG11, Alpbach, Austria, April 2020.
[2] m52481, “[V-PCC] EE2.6 Mesh Coding with V-PCC,” ISO/IEC JTC1/SC29/WG11, Brussels, Belgium, Jan 2020.
[3] m51002, “[V-PCC] EE2.6 Update on mesh coding with V-PCC,” ISO/IEC JTC1/SC29/WG11, Geneva, Switzerland, Oct 2019.
[4] m49588, “[V-PCC] V-PCC extension for mesh coding,” ISO/IEC JTC1/SC29/WG11, Gothenburg, Switzerland, July 2019.
[5] MeshLab pre-built version 2020.03 for Windows, https://github.com/cnr-isti-vclab/meshlab/releases/tag/Meshlab-2020.03

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image1.png

image2.png

