INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2020/m53539
April 2020, Alpbach, AT

	Source:
	Panasonic corporation

	Status :
	Input document

	Title:
	[G-PCC] Slice Visibility Metadata for partial access

	Author:
	Noritaka Iguchi, Keng Liang LOI

Abstract
In this contribution, we propose a metadata for partial access/decode of 3D point cloud.
G-PCC supports tile/slice partitioning and partial decode functionality that enable flexible decoding according to software / hardware resources.
[bookmark: _Hlk37836295]When using the point cloud viewer, which is one of applications, there is a use case in which only a point cloud that visible from a viewpoint (or camera position) is partially selected and displayed. To achieve partial decoding through selection of visible slices from the coded data, we propose the usage of metadata that indicates the visibility of each slice.

Point cloud viewer
 For example, in use case of 3D point viewer, point cloud to be displayed is dependent on the viewpoint (camera position). When viewed from each viewpoint, only a part of the point cloud is displayed as shown in Figure 1. This means that not all point clouds are needed for display.

[image:]
Figure 1 Point cloud viewer

Slice Partitioning and partial decode
G-PCC supports slice / tile partitioning and each slice can be encode/decode individually.
By using partition method, a large point cloud with over 50 million points (ex. Landscape or Stanford content) can be encoded/decoded with limited hardware/software resources.
For example, in CTC, the point cloud is partitioned in such a way that the number of points is 1.1 million or less. G-PCC also supports partial decoding by providing the possibility of decoding only part of the selected slices.

Partial decode by visibility information
In the viewer application, the data loading time or memory usage can be reduced by selecting and decoding only the necessary slices.

[bookmark: _Hlk37842104]Figure 2 shows the diagram of encoder and decoder for viewer application.
At the encoder, the point cloud is partitioned into slices with the visibility information of each slice generated. The visibility information is stored in the slice metadata followed by encoding of slice and slice metadata.

At the decoder, the visibility information of the slice is first extracted from the bitstream. The visible slices are then selected by using visibility information and camera parameter so that only the selected slices are decoded and displayed.

[image:]

Figure 2 Encoder and Decoder for Viewer application

Problem statement
In current G-PCC, there is the bounding box information of tile in TileInventory where the slice can be selected based on the tile bounding box.
However, since there is no information indicating the characteristics of slices, partial decode by using characteristics of slices can not be achieved for the viewer application.

Proposal
In order to achieve the partial decode by visibility, we propose the SliceInventory.

SliceInventory
· includes normal vector of slices
· includes visibility information of slices
· refers to the TileInventory (add the tile_inventory_id)

Normal Vector of slices
A vector that is perpendicular to the plane of the objects of slice.
Multiple normal vectors can be signalled for one slice.

Visibility Information
Visibility information is multiple flags that indicates whether the slice is visible or not from a predefined direction.
For example, if 6 directions are predefined as shown in the Figure 3 below then 6 flags are used to signal whether the slice is visible from the different directions.

[image:]

Figure 3 Flag signalling for 6 different directions

The number of directions can be expanded by using below rule.
Like the latitude and longitude coordinates of the globe, a sphere is divided by an angle. The direction from the point where the lines intersect to the center of the sphere can then be defined.

If the angle is 90 degrees, then visibility is in 6 different directions like what is shown in the above figure. The number of directions and the resolution of angle can be increased using smaller angles as shown in Figure 3 below.

[image:]

Figure 3 Visibility based on angle settings of 90, 45 and 30 degree

The number of direction vector can be calculated by using the following formula:

2 + (360/angle)*(180/angle-1)

The order of the direction should be defined.
 For example, the order may be defined as a left rotation of the circle in the x-y plane, starting from the top of the sphere.

[image:]

Figure 4 Top view of order of points based on angle settings of 90, 45 and 30 degree

Slice Inventory
Slice inventory refers the tile inventory that have both tile_inventory_id and num_tiles. Therefore, tile_inventory_id should be added in both tile inventory and slice inventory.
In slice inventory, there will be a loop where the information of slices belonging to each tile is stored.
[bookmark: _Hlk37810241]Sometimes a tile may not contain any slices. In that case slice_null_flag is set to 1 and slice information of this tile is not signaled.
The number of slices in tile (num_slices_in_tile_minus1) is signaled, and in a tile loop, slice information is signalled in slice loop.
If the visibility information per tile (not the visibility information per slice) is to be signaled, the information on the number of slices in a tile can be set to 1 by setting per_tile_flag is set to 1.

	[bookmark: _Hlk37809202]slice_inventory() {
	Descriptor

		tile_inventory_id
	u(v)

		slice_normal_vector_flag
	u(1)

		slice_visibility_flag
	u(1)

		per_tile_flag
	u(1)

		for(i = 0; i < num_tiles@tile_inventory(tile_inventory_id) ; i++) {
	

				slice_null_flag[i]
	u(1)

				if(!slice_null_flag){
	

	[bookmark: _Hlk37810562]				num_slices_in_tile_minus1[i]
	u(v)

					NumSlices =
 (per_tile_flag)? 1, num_slices_in_tile_minus1[i] +1
	

					for(j = 0; j < NumSlices; j++) {
	

						if(slice_normal_vector_flag){
	

							num_normals_minus1[i][j]
	u(v)

							normal_bits[i][j]
	u(v)

							for(k = 0; k < num_normals_minus1[i][j] + 1; k++) {
	

								normal_x[i][j][k]
	s(v)

								normal_y[i][j][k]
	s(v)

								normal_z[i][j][k]
	s(v)

							}
	

						}
	

						if(slice_visibility_flag){
	

							angle_parameter
	u(2)

							NumVector = NumVectorTable[angle_parameter]
	

							for(k = 0; k < NumSlices; k++){
	

							visiblility_flag
	u(1)

							}
	

						}
	

					}
	

				}
	

			}
	

		}
	

	}
	

angle_parameter : 0…90degree, 1…45 degree, 2…30 degree, 3…15 degree
NumVectorTable : [6, 26, 38, 206]

Conclusion
In this contribution, we proposed the use of slice metadata to achieve the partial decode which enables selection of visible slices using visibility information and camera parameters.

The metadata contains the following:

1. slice inventory that include the slice information
2. visibility information for slices
3. normal vector for slices

We also proposed the modification of tile_inventory.

Slice inventory is needed for selection of visible slices from the bitstream.
We recommend adding the proposed slice metadata to DIS text.
[bookmark: _GoBack]
image3.png

image4.png
90 degree 45degree 30degree

image5.png
The Order of the points

image1.png

image2.png
bitstream
w/ slice metadata(visibility)

decoder

slice metadata
(visibility)
Camera parameter

