INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2020/m53542
April 2020, Alpbach, AT

	Source:
	Panasonic corporation

	Status :
	Input document

	Title:
	[G-PCC] Entropy Continuation flag for Low Latency Coding

	Author:
	Chung Dean HAN, Keng Liang LOI

Abstract
In this contribution, we propose the method to continue entropy coding context table for slice. In this method, enables to improve the performance by continuing the entropy coding probability value to next slice compare to initializing entropy coding probability value for each slice.
In previous MEPG 125th meeting, we have proposed the same proposal in m46106[1] for low latency coding. But it was rejected because there were no low-latency use cases at the time. However, it has been agreed that the low-latency requirement is needed, we propose again.

The proposed approach in prediction geometry shows approximate gain of 6% for slices each with 1024 points while approximate 10% gain for slice each with 512 points on CW. For octree geometry, the approximate gain is 4% for 1024 points and 5% for 512 points.

Overview
This contribution contains information on:
1. entropy continuation process for geometry (both octree and predictive coding) and attribute
2. Add switching flag to control continue or initialize in the data unit header
3. Results on improvement obtained from utilizing entropy continuation flag

Entropy continuation flag per slice
Entropy Coding is widely used in PCC, it is an encoding or decoding method based on a probability models that are selected adaptively based on local context. So as the local context encoded changes, the state of the encoder / decoder engine varies. Based on the different context, as more encoding process is conducted. The probability models become more efficient in encoding the data.
Currently from 1 slice to another, there is a process to re-initialize the state of the engine to default value at the end of each slice for parallelism. It will not be possible to continue context table for multicore processing and this value is required to be initialized to default. Ideally each slice unit will be independent from one another.
But if slice is implemented for data segmentation purposes for low latency application and not for parallelism in multicore processing, the initialization of entropy context table will cause drop in encoding performance. This is because probability model will need to start from default value instead of continuing from a well predicted probability model. Due to this, the entropy context continuation flag can help play a role by saving the context table probability table at the end of slice and set it back at the beginning of the next slice to continue with the same context probability. This method will be able to improve encoding performance for slice.

The decoder will require to have similar implementation to save context table probability value at the end of slice and set it back for new slice.

[bookmark: _GoBack]The entropy continuation process can work both on Octree geometry or Prediction geometry. Separate parameters are used to save and set the context table. It is the same for Attribute entropy coding table, continuation flag for Geometry and Attribute are separated so that user can control and produce PCC bitstreams with higher compression ratio. The entropy_continuation_flag for geometry will be put in Geometry data unit header (gsh) while entropy_continuation_flag for attribute will be put in Attribute data unit header (ash).

[image:]
Figure 1
Implementation

The proposed method to initialize or continue context is implemented in TMC software with slice-partition-framework software as a baseline. Both the encoding and decoding process is modified to write/read entropy_continuation_flag parameter. The entropy_continuation_flag for encoding and decoding in Geometry is added into Geometry data unit header (gsh). The context_continuation_flag can be individually controlled for every single slice. Currently for simulation purposes, during encoding, the value is directly set through Geometry Parameter Set (GPS). This setting is applicable throughout for all slice.

At the beginning of slice encoding, if entropy_continuation_flag is set to zero and the slice number is bigger than 0 (not first slice), then the context table probability value will be set to previous saved value. At the end of slice encoding, the context table probability value will be saved before exiting slice encoding. The same implementation is applicable for decoder. At the beginning of slice decoding, the context table probability value will be loaded if the condition matches. At the end of slice decoding, the entropy context table probability value will be saved
[image:]
Figure 2

Proposed Syntax
Geometry data unit header syntax
	geometry_data_unit_ header() {
	Descriptor

		gsh_num_points_minus1
	u(24)

		gsh_geometry_parameter_set_id
	ue(v)

		gsh_tile_id
	ue(v)

		gsh_slice_id
	ue(v)

		frame_idx
	u(v)

	 gsh_entropy_continuation_flag
	u(1)

		…
	

	}
	

Table 1:Geometry data unit header Syntax modification
Attribute data unit header syntax

	attribute_data_unit_header() {
	Descriptor

		ash_attr_parameter_set_id
	ue(v)

		ash_attr_sps_attr_idx
	ue(v)

		ash_attr_geom_slice_id
	ue(v)

	 ash_entropy_continuation_flag
	u(1)

	 …
	

	}
	

Table 2: Attribute data unit header Syntax modification

Experiment Result
The experiment is conducted in both octree coding and predictive coding on C2 and CW conditions in CTC [3].

The branch ‘TMC13 predgeom-v9ref’ for EE13.8 [2] is used for octree coding and the branch ‘TMC13 predgeom’ is used for predictive coding. In predictive coding, the azimuth sorting method is used as it is the better sorting method available.

We compared the results when the entropy_continuation_flag is ON and OFF under the following four conditions.

1. Predictive coding w/ slice partitioning (number of points = 1024)
2. Predictive coding w/ slice partitioning (number of points = 512)
3. Octree coding w/ slice partitioning (number of points = 1024)
4. Octree coding w/ slice partitioning (number of points = 512)

Predictive coding w/ slice partitioning (number of points = 1024)
[image:]

Predictive coding w/ slice partitioning (number of points = 512)
[image:]

From the result of predictive geometry, it is noticed that there is gain from C2 and CW. The gain increases if the bitstreams is divided into more slices seen when 512 nodes per slice is used.

Octree coding w/ slice partitioning (number of points = 1024)

[image:]

Octree coding w/ slice partitioning (number of points = 512)
[image:]

From the result of octree geometry, it is also noticed that there is gain from C2 and CW. The gain increase if the bitstreams is divided into more slices seen when 512 nodes per slice is used.

Conclusions
In this contribution, we presented a proposal to initialize or continue entropy context probability value for slice.
Experiment results show coding gain compared to current implementation which always re-initialize entropy context table at each slice.
If the encoding and decoding process does not require to be run in parallel under multicore processing, but still require slice division for data segmentation for low latency application, this proposal is then very effective in getting higher coding gain especially when number of slice to be divided is relatively large.

This proposed method could be adopted in the aspect of improving coding performance for slice encoding/decoding. Based on this result, it is recommended that the proposed syntax be added into WD and TMC13 software.

References
[1] [bookmark: _Ref519119330][bookmark: _Ref511594492][bookmark: _Ref519011981][bookmark: _Ref511062025]“[G-PCC] Slice header modification in TMC13” ISO/IEC JTC1/SC29 WG11 MPEG2019 Doc. m46106, Marrakech, MA, January 2019
[2] TMC13v9 and TMC13 EE13.8 predgeom-v9ref software
http://mpegx.int-evry.fr/software/MPEG/PCC/CE/mpeg-pcc-tmc13/tree/mpeg129
[3] “Common Test Conditions for point cloud compression” ISO/IEC JTC1/SC29 WG11 Doc. N19084, Brussels, BE, January 2020
image1.emf

image2.emf

image3.emf
Reference:cfg-predgeom-base.yaml cfg-predgeom=azimuth.yaml cfg-slice=1024.yaml

Tested:

All Intra

LumaChroma CbChroma CrReflectanceD1D2

Cat1-A average0.0%0.0%0.0%-6.7%-6.7%

Cat1-B average0.0%0.0%0.0%-8.3%-8.3%

Cat3-fused average0.0%0.0%0.0%0.0%-7.9%-7.9%

Cat3-frame average 0.0%-7.1%-7.1%

Overall average0.0%0.0%0.0%0.0%-7.5%-7.5%

Avg. Enc Time [%]

Avg. Dec Time [%]

GeometryColourReflectanceTotal

Cat1-A average91.1%100.0%96.1%

Cat1-B average93.5%100.0%95.5%

Cat3-fused average91.1%100.0%100.0%95.4%

Cat3-frame average93.0%100.0%94.1%

Overall average92.8%100.0%100.0%95.5%

Avg. Enc Time [%]

Avg. Dec Time [%]

EE13.8_azimuth_slice1024

EE13.8_azimuth_slice1024_initcabac0

C2_ai

lossy geometry, lossy attributes [all intra]

End-to-End BD

‑

AttrRate [%]Geom. BD

‑

TotGeomRate [%]

89%

99%

CW_ai

lossless geometry, lossless attributes [all intra]

bpip ratio [%]

83%

81%

image4.emf
Reference:cfg-predgeom-base.yaml cfg-predgeom=azimuth.yaml cfg-slice=512.yaml

Tested:

All Intra

LumaChroma CbChroma CrReflectanceD1D2

Cat1-A average0.0%0.0%0.0%-10.0%-10.0%

Cat1-B average0.0%0.0%0.0%-11.9%-12.0%

Cat3-fused average0.0%0.0%0.0%0.0%-12.0%-12.0%

Cat3-frame average 0.0%-10.5%-10.5%

Overall average0.0%0.0%0.0%0.0%-11.0%-11.0%

Avg. Enc Time [%]

Avg. Dec Time [%]

GeometryColourReflectanceTotal

Cat1-A average87.1%100.0%94.3%

Cat1-B average90.9%100.0%93.8%

Cat3-fused average88.0%100.0%100.0%93.7%

Cat3-frame average90.4%100.0%91.8%

Overall average90.0%100.0%100.0%93.7%

Avg. Enc Time [%]

Avg. Dec Time [%]

110%

108%

108%

119%

CW_ai

lossless geometry, lossless attributes [all intra]

bpip ratio [%]

C2_ai

lossy geometry, lossy attributes [all intra]

End-to-End BD

‑

AttrRate [%]Geom. BD

‑

TotGeomRate [%]

EE13.8_azimuth_slice512

EE13.8_azimuth_slice512_initcabac0

image5.emf
Reference:cfg-slice=512.yaml

Tested:

All Intra

LumaChroma CbChroma CrReflectanceD1D2

Cat1-A average0.0%0.0%0.0%-6.3%-6.3%

Cat1-B average0.0%0.0%0.0%-2.9%-2.9%

Cat3-fused average0.0%0.0%0.0%0.0%-2.9%-2.9%

Cat3-frame average 0.0%-2.6%-2.6%

Overall average0.0%0.0%0.0%0.0%-4.2%-4.2%

Avg. Enc Time [%]

Avg. Dec Time [%]

GeometryColourReflectanceTotal

Cat1-A average96.4%100.0%98.6%

Cat1-B average99.0%100.0%99.3%

Cat3-fused average98.9%100.0%100.0%99.4%

Cat3-frame average97.7%100.0%98.1%

Overall average98.4%100.0%100.0%99.0%

Avg. Enc Time [%]

Avg. Dec Time [%]

EE13.8_octree_slice1024

EE13.8_octree_slice1024_initcabac0

C2_ai

lossy geometry, lossy attributes [all intra]

End-to-End BD

‑

AttrRate [%]Geom. BD

‑

TotGeomRate [%]

89%

95%

CW_ai

lossless geometry, lossless attributes [all intra]

bpip ratio [%]

93%

92%

image6.emf
Reference:cfg-slice=512.yaml

Tested:

All Intra

LumaChroma CbChroma CrReflectanceD1D2

Cat1-A average0.0%0.0%0.0%-7.1%-7.2%

Cat1-B average0.0%0.0%0.0%-4.0%-4.0%

Cat3-fused average0.0%0.0%0.0%0.0%-4.1%-4.1%

Cat3-frame average 0.0%-4.4%-4.4%

Overall average0.0%0.0%0.0%0.0%-5.3%-5.3%

Avg. Enc Time [%]

Avg. Dec Time [%]

GeometryColourReflectanceTotal

Cat1-A average94.8%100.0%97.8%

Cat1-B average98.1%100.0%98.7%

Cat3-fused average98.0%100.0%100.0%98.9%

Cat3-frame average95.7%100.0%96.5%

Overall average97.3%100.0%100.0%98.3%

Avg. Enc Time [%]

Avg. Dec Time [%]

104%

100%

103%

105%

CW_ai

lossless geometry, lossless attributes [all intra]

bpip ratio [%]

C2_ai

lossy geometry, lossy attributes [all intra]

End-to-End BD

‑

AttrRate [%]Geom. BD

‑

TotGeomRate [%]

EE13.8_octree_slice512

EE13.8_octree_slice512_initcabac0

