
INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JCTC1/SC29/WG11 MPEG/m53678
April 2020, Online

Source: Apple Inc.
Status: Input document
Title: G-PCC: Coding of significant attribute coefficients
Author(s): David Flynn davidflynn@apple.com

Khaled Mammou kmammou@apple.com

Abstract

Attribute coding in the current G-PCC draft represents each coefficient tuple by a significant coefficient tuple
flag. If the coefficient tuple is not significant, further syntax elements relating to the coefficient values are
skipped. While a run-length coding process is described, the use of a unary run-length representation results
in numerous bins. This contribution proposes a more efficient representation.

Run-length coding

Attribute coding uses zero-run-length coding to encode significant coefficient flags. The current binarisation
of the zero-run is truncated unary coded and results in as many bins as there are coefficients.

To illustrate, the following sequence of significant coefficient flags are converted to run lengths and then
coded using a unary code:

sig_coeff: 0 1 0 0 1 1 0 0 0 1 1 1
run_length: 1 2 . . 0 3 . . . 0 0
unary: 0 1|0 0 1|1|0 0 0 1|1|1

As a brief aside, the current use of truncated unary coding instead of unary coding makes little sense where
the truncation can occur at most once per slice. To this end, it would be better to use unary coding and avoid
the extra truncation check.

In the current design, contextualisation is performed using a sequence of three contexts for each zero run.

Proposal

While a unary code is suitable for coding distributions with an exponential distribution, a practical design can
switch to a code that grows at a slower rate after coding an initial interval. Such codes are sub-exponential
codes, or a concatenation of a Golomb-Rice code with an exponential Golomb code.

However, replacing the coding of zero-runs only addresses half of the problem. While long zero runs are
expected with high degrees of quantisation, as quantisation decreases, or in the limit at lossless coding, the
opposite occurs: long runs of ones.

To enable a reduction of coded bins and context coded bins, it is proposed to use a two state run-length coder
that codes zero-runs and non-zero-runs.

1 Date saved: 2020-04-15

The system operates as follows:

A decoder tracks the current run state (zero-run or non-zero-run). Each coded run-length indicates the ter-
mination of the current run. Therefore the end of a run indicates the inversion of the run state. The initial run
state is explicitly signalled at the start of a slice. Each run is binarised using a k-th order sub-exponential code,
with the unary prefix being coded with up to five contexts. Contextualisation is performed independently
for each type of run.

Since the system switches between the two states, it is impossible to signal a run-length of 0 (which would
indicate a return to the current state). Each run-length is coded as run_length_minus1.

To illustrate using the same example:

sig_coeff: 0 1 0 0 1 1 0 0 0 1 1 1
run: 1 1 2 . 2 . 3 . . 3 . .
init_run_type: 0
run_length_minus1: 0 0 1 . 1 . 2 . . 2 . .

The following summarises the decoding process:

// NB: initial runType is inverted to make loop more readable
runType = 1 ^ decodeRunType();
runLength = 0
for (idx = 0; idx < numPoints; idx++) {

if (!runLength--) {
// end of run, decode next run length
// run type inverts with each run
runLength = decodeRunLengthMinus1(runType);
runType = !runType;

// If starting a run of zeros, process here and jump to next run
if (runType == 0) {

fill(coeff[i], runLength + 1, 0);
idx += runLength;
runLength = 0;
continue;

}
}

// NB: coefficient is known not to equal 0 since this isn’t a run of zeros.
coeff[idx] = decodeCoeff();

}

The performance of the proposed method is assessed according to the common test conditions [1] and com-
pared to the TMC13v9.0 anchor [2] in Tables 1 and 2.

2 Date saved: 2020-04-15

Table 1 – Performance of proposed significant coefficient run-length coding using LoD attribute coding compared
to v9.0 anchor

BPP Ratio [%] BD-Rate [Δ%] Avg. of ratio maxrssk [%] Ratio of avg. runtime [%]
Condition Class Geometry Colour Refl D1 D2 Y Cb Cr R Encoder Decoder Encoder Decoder

C1_ai cat1-A 0.0 0.0 −2.5 −4.5 −5.1 101 100 99 99
C1_ai cat1-B 0.0 0.0 −0.3 −1.2 −1.8 100 100 99 97
C1_ai cat3-fused 0.0 0.0 0.1 0.1 0.1 0.3 100 100 99 99
C1_ai cat3-frame 0.0 0.0 −0.6 100 100 104 104
C1_ai overall 0.0 0.0 −1.3 −2.6 −3.2 −0.3 100 100 100 99

C2_ai cat1-A 0.0 0.0 −0.4 −0.6 −0.7 100 100 101 94
C2_ai cat1-B 0.0 0.0 −0.1 −0.6 −1.0 100 100 101 100
C2_ai cat3-fused 0.0 0.0 0.2 0.2 0.2 0.6 101 100 98 99
C2_ai cat3-frame 0.0 0.0 0.6 100 100 99 96
C2_ai overall 0.0 0.0 −0.2 −0.6 −0.8 0.6 100 100 101 97

CW_ai cat1-A 100.0 100.1 100 100 96 98
CW_ai cat1-B 100.0 100.0 100 100 101 104
CW_ai cat3-fused 100.0 100.0 100.2 100 100 98 81
CW_ai cat3-frame 100.0 100.2 100 100 98 97
CW_ai overall 100.0 100.1 100.2 100 100 99 100

CY_ai cat1-A 0.0 0.0 0.7 0.7 0.7 100 100 101 97
CY_ai cat1-B 0.0 0.0 0.6 0.6 0.6 100 100 99 103
CY_ai cat3-fused 0.0 0.0 0.4 0.4 0.4 1.1 100 100 97 94
CY_ai cat3-frame 0.0 0.0 0.5 100 100 102 100
CY_ai overall 0.0 0.0 0.6 0.6 0.6 0.7 100 100 100 100

NOTE — Condition CY metrics reported using Hausdorff PSNR.

Table 2 – Performance of proposed significant coefficient run-length coding using RAHT attribute coding com-
pared to v9.0 anchor

BPP Ratio [%] BD-Rate [Δ%] Avg. of ratio maxrssk [%] Ratio of avg. runtime [%]
Condition Class Geometry Colour Refl D1 D2 Y Cb Cr R Encoder Decoder Encoder Decoder

C1_ai cat1-A 0.0 0.0 −4.4 −5.4 −5.9 101 101 97 99
C1_ai cat1-B 0.0 0.0 −1.2 −1.8 −2.0 100 100 98 99
C1_ai cat3-fused 0.0 0.0 0.1 0.2 0.2 −0.1 100 100 102 99
C1_ai cat3-frame 0.0 0.0 −1.0 100 100 100 100
C1_ai overall 0.0 0.0 −2.6 −3.3 −3.6 −0.7 100 100 98 99

C2_ai cat1-A 0.0 0.0 −1.2 −1.4 −1.3 100 101 102 95
C2_ai cat1-B 0.0 0.0 −0.8 −1.3 −1.5 100 100 101 97
C2_ai cat3-fused 0.0 0.0 0.2 0.2 0.3 0.4 100 100 98 96
C2_ai cat3-frame 0.0 0.0 −0.1 100 100 100 100
C2_ai overall 0.0 0.0 −0.9 −1.3 −1.3 0.1 100 100 101 97

Sign flags

The current attribute coding design encodes signed coefficient values, x by converting to 2|x| + sign. The
resulting coefficient is then coded using the dictionary coder. However, the sign bits are unpredictable and
serve to decrease the useful occupancy of dictionary (each magnitude will be represented twice), dilute the
probability of a given magnitude, and reduce the effectiveness of coding greater than x flags.

To address this, we propose coding coefficients using separate magnitude and sign values. The sign value is
coded as a bypass bin.

The following illustrates the changes to the coefficient decoding:

@@ -159,18 +159,22 @@ PCCResidualsDecoder::decode(uint32_t value[3])
int b3 = value[1] <= 1;
value[2] = decodeSymbol(3 + (b0 << 1) + b2, 3 + (b1 << 1) + b3, 1);

- int d = (value[0] == value[1] && value[0] == value[2]);
- for (int k = 0; k < 3; k++) {
- value[k] += d;
- }
+ if (value[0] && arithmeticDecoder.decode(binaryModel0))
+ value[0] = -value[0];
+ if (value[1] && arithmeticDecoder.decode(binaryModel0))
+ value[1] = -value[1];

3 Date saved: 2020-04-15

+ if (value[2] && arithmeticDecoder.decode(binaryModel0))
+ value[2] = -value[2];
}

//--

-uint32_t
+int32_t
PCCResidualsDecoder::decode()
{

- return decodeSymbol(0, 0, 0) + 1;
+ auto mag = decodeSymbol(0, 0, 0) + 1;
+ bool sign = arithmeticDecoder.decode(binaryModel0);
+ return sign ? -mag : mag;
}

The performance of the proposed method is assessed according to the common test conditions [1] and com-
pared to the TMC13v9.0 anchor [2] in Tables 3 and 4.

Table 3 – Performance of proposed coefficient sign coding using LoD attribute coding compared to v9.0 anchor

BPP Ratio [%] BD-Rate [Δ%] Avg. of ratio maxrssk [%] Ratio of avg. runtime [%]
Condition Class Geometry Colour Refl D1 D2 Y Cb Cr R Encoder Decoder Encoder Decoder

C1_ai cat1-A 0.0 0.0 −0.7 −0.6 −0.6 100 100 97 99
C1_ai cat1-B 0.0 0.0 −0.5 −0.5 −0.5 100 100 96 96
C1_ai cat3-fused 0.0 0.0 −0.5 −0.6 −0.6 −0.3 100 100 98 98
C1_ai cat3-frame 0.0 0.0 −0.5 100 100 96 96
C1_ai overall 0.0 0.0 −0.6 −0.5 −0.5 −0.4 100 100 97 97

C2_ai cat1-A 0.0 0.0 −0.8 −0.8 −0.8 100 100 100 93
C2_ai cat1-B 0.0 0.0 −0.5 −0.5 −0.5 100 100 99 98
C2_ai cat3-fused 0.0 0.0 −0.3 −0.5 −0.4 −0.2 100 100 101 97
C2_ai cat3-frame 0.0 0.0 −0.5 100 100 97 95
C2_ai overall 0.0 0.0 −0.6 −0.6 −0.6 −0.4 100 100 99 96

CW_ai cat1-A 100.0 98.1 100 100 94 97
CW_ai cat1-B 100.0 97.8 100 100 96 97
CW_ai cat3-fused 100.0 98.0 98.1 100 100 99 89
CW_ai cat3-frame 100.0 98.0 100 100 104 104
CW_ai overall 100.0 97.9 98.1 100 100 96 97

CY_ai cat1-A 0.0 0.0 0.1 0.1 0.1 100 100 100 99
CY_ai cat1-B 0.0 0.0 −0.3 −0.3 −0.3 100 100 95 97
CY_ai cat3-fused 0.0 0.0 −1.1 −1.1 −1.1 −0.5 100 100 98 96
CY_ai cat3-frame 0.0 0.0 −0.5 100 100 96 96
CY_ai overall 0.0 0.0 −0.2 −0.2 −0.2 −0.5 100 100 97 97

NOTE — Condition CY metrics reported using Hausdorff PSNR.

Table 4 – Performance of proposed coefficient sign coding using RAHT attribute coding compared to v9.0 anchor

BPP Ratio [%] BD-Rate [Δ%] Avg. of ratio maxrssk [%] Ratio of avg. runtime [%]
Condition Class Geometry Colour Refl D1 D2 Y Cb Cr R Encoder Decoder Encoder Decoder

C1_ai cat1-A 0.0 0.0 −0.6 −0.6 −0.6 100 101 97 98
C1_ai cat1-B 0.0 0.0 −0.5 −0.5 −0.5 100 100 96 97
C1_ai cat3-fused 0.0 0.0 −0.5 −0.6 −0.6 −0.4 100 100 97 94
C1_ai cat3-frame 0.0 0.0 −0.5 100 100 97 98
C1_ai overall 0.0 0.0 −0.5 −0.5 −0.5 −0.5 100 100 97 97

C2_ai cat1-A 0.0 0.0 −0.9 −1.0 −0.9 100 101 103 97
C2_ai cat1-B 0.0 0.0 −0.5 −0.4 −0.3 100 100 97 98
C2_ai cat3-fused 0.0 0.0 −0.5 −0.6 −0.6 −0.3 100 100 95 98
C2_ai cat3-frame 0.0 0.0 −0.6 100 100 93 93
C2_ai overall 0.0 0.0 −0.7 −0.7 −0.6 −0.5 100 100 98 97

References

[1] 3DG, “Common Test Conditions for PCC,” ISO/IEC JTC1/SC29/WG11, 129th meeting, Brussels, Tech.
Rep. w19084, Jan. 2020.

4 Date saved: 2020-04-15

[2] ——, “G-PCC performance evaluation and anchor results,” ISO/IEC JTC1/SC29/WG11, 129thmeeting,
Brussels, Tech. Rep. w19086, Jan. 2020.

5 Date saved: 2020-04-15

	Run-length coding
	Proposal

	Sign flags

