INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2019/m54651
June 2020, Online



	Source
	Panasonic corporation

	Status
	Input document

	Title
	[G-PCC][New] Software refinement to achieve to the tile partitioning

	Author
	Noritaka Iguchi


Abstract

The motivation of this contribution is to enable the functionality of tile partitioning in TMC13.
In current TMC13v10, the function of tile partitioning has already supported. But it's not used in CTC and doesn't really work. We refined the code and fixed some bug to work tile/slice partitioning framework.


The problem of current TMC13v10
In current TMC13v10, the function of tile partition is supported, and the point cloud can be partitioned into cubes by setting ‘—tileSize == xx’. But in CTC simulation, ‘tileSize’ is not set and number of tile is always set to 1. 
So, tile partition scheme doesn’t work except the number of tile is equal to 1.

· Work
· no tile partition + slice partition (CTC)　
· Doesn’t work
· tile partition + no slice partition
· tile partition + slice partition
· tile inventory


Issue of TMC13v10 frame work

[Issue1]
Since the condition ‘if (Number of Points < sliceMaxPoints)’ is exist before tile partition, the point cloud can’t be partitioned to tiles when the condition is true.
tile partition is impossible

[Issue2]
Since the condition ‘if (Number of Points < sliceMaxPoints)’ is not exist after partition, even if the number of points of tiled point cloud has few points, tiled point cloud is partitioned.

[Issue3]
Since the condition ‘if slice partition is NONE or not’ is exist before tile partition, the point cloud can’t be partitioned to tiles when the condition is true.

 [Issue4] 
There are two kinds of ‘compress partition’ function. One is for single slice and another is for multiple slices. These two processes are inconsistently. 
For example, slice origin is calculated before the ‘compress partition’ for single slice to minimum origin of the slice. But in the ‘compress partition’ for multiple slices, slice origin is not calculated and set to 0. As a result, slice origin is set for only cat3-framed content, and not be set for cat1-a, cat1-b, cat3-framed content. Even if it is necessary to change the process depending on the content, it had better to be switched according to the encoding parameters.

[image: ]
Figure 1 Flowchart of tile/slice framework in TMC13 (encoder.cpp)


Proposed Framework

To solve the above issue. We modified the tile and slice framework in encodr.cpp.
The changes are as follow:

· Unify the ‘compress partition’ function 
· Move the condition ‘if(number of points >= sliceMaxPoints)’
· Slice origin is calculated and set before ‘compress partition’ function

[image: ]
Figure 2 Flowchart of proposed tile/slice framework (encoder.cpp)


Results
In addition to the framework changes described in Chapter 3, some bugs were fixed to complete the framework. Information on bug fixes is given in Chapter 8.

By the refinement of the code, we confirmed to be able to work the below case on tile and slice partitioning.

· Work
· no tile partition + slice partition (CTC)　
· tile partition + no slice partition
· tile partition + slice partition
· tile inventory


CTC simulation
The simulation was conducted to confirm that the changes due to the framework and bug fixes do not affect to CTC result.

As shown in Figure 3, it can be confirmed that there is almost no difference in performance and complexity due to changing the framework. 

The small difference of the result in cat1 and cat3 fused content is due to the difference of the slice origin. In the framework before modification, the slice origin was set only for cat3 framed, and was set to 0 for cat1 and cat3 fused, whereas in the framework before modification, slice origin is set to the minimum of the slice for all content.


[image: ]
[bookmark: _Ref43948737]Figure 3 The result of change the framework on CTC condition.



Conclusion
By the refinement of the code, we confirmed to be able to work the below case on tile and slice partitioning. We also confirmed no affect to CTC result when number of tile is equal to 1.
We recommend that proposed modification (non-normative encode framework) is adopted in the new TMC13 software.
· no tile partition + slice partition (no affect to CTC result)
· tile partition + no slice partition
· tile partition + slice partition
· tile inventory
Modification and Bug-fix
[bookmark: _GoBack]PCCTMC3Encoder3::compress@encoder.cpp
[image: ]


[image: ]

New function: partitionNone @partitioning.cpp
[image: ]


PCCTMC3Encoder3::compress@encoder.cpp

Modification: 
Slice origin is calculated before encode each slice
    note: slice origin should not be calculated in the slice partition function
             because the point cloud input to the slice partition function is shifted by tile origin

[image: ]

partitionByUniformSquare@partitioning.cpp

[image: ]
tilePartition@partitioning.cpp
[image: ]
Currently, the maximum value that can be partitioned for each axis is 28.
If over 28, tile partition doesn’t work correctly.
Solution1:change the code as right side.
Solution2:add assertion (floor(clould[i][k] / tileSize) < 2^8)
What value should G-PCC / TMC13 support?
image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image1.png

image2.png

