INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11/m54600
June 2020, Online

	Source
	Sony Corporation

	Status
	Input contribution

	Title
	[G-PCC] Bug fix on mismatch of text and software on lifting scalability

	Author
	Satoru Kuma, Ohji Nakagami

Abstruct
This contribution is bug fix report for mismatch of the text and software on scalable lifting.
Issue
As scalable lifting builds attribute Lod harmonized with octree structure, points coded by DCM have to be handled in the case of partial decoding. In software, the following process is applied in the case of partial decoding.

 for (int i = 0; i < positions.size(); i++) {
 PointType newPoint = positions[i];
 if (minGeomNodeSizeLog2 > 0) {
 uint32_t mask = ((uint32_t)-1) << minGeomNodeSizeLog2;
 positions[i].x() = ((int32_t)(positions[i].x()) & mask);
 positions[i].y() = ((int32_t)(positions[i].y()) & mask);
 positions[i].z() = ((int32_t)(positions[i].z()) & mask);
 }
 }
 positions.erase(
 std::unique(positions.begin(), positions.end()), positions.end());

This process 1. does position quantization and 2. removes duplicate point.
There is no description about it in current text[1]. If this text is missing, the number of decoded points and the number of decoded attribute value might be mismatched.

Proposal
To resolve this mismatch of software and text, the text should be added in the attribute decoding section. See appendix for the suggested text.
Discussion
If DCM is disabled, the process is not needed. However, disabling DCM is not practical because DCM has runtime advantages. This advantage is valuable on huge and high resolution point cloud coding.
The process should be applied to salable lifting. In geometry only case, the process is not needed,
Conclusion
We propose to make text match with software.
Referemces
[1] "G-PCC Future Enhancements," ISO/IEC JTC1/SC29/WG11, N19328, April 2020

Appendix
Suggested Text 1
The highlighted is additional description.

First, if lifting_morton_sort_skip_enabled_flag equal to 0, the point sorting process based on Morton code in clause 5.9.8 is invoked. Let Order[i] be the array of point indexes sorted according to their Morton codes and McodeUnsorted the array of unsorted Morton codes.

Next, If lifting_scalability_enabled_flag is equal to 1, the following is applied to quantize position with intermediate position, to remove duplicate point, to update Order[] and McodeUnsorted.

if (minGeomNodeSizeLog2 > 0) {
 Mask = (-1 << (minGeomNodeSizeLog2 * 3))
 numDuplicatePoint = 0;
 for (i = 0; i < PointCount; i++) {
 if(McodeUnsorted(Order[i]) & ~Mask != 0) {
 for (axis = 0; axis < 3; axis++){
 PointPos[Order[i]][axis]&= -1 << minGeomNodeSizeLog2
 }
 if(i > 0 && McodeUnsorted(Order[i-1])&Mask == McodeUnsorted(Order[i])&Mask){
		 duplicatePointIndexes[numDuplicatePoint++] = i
 }
 j=0
 if(numDuplicatePoint){
 numUniqPoint = 0
 for (i = 0; i < PointCount; i++) {
 if(i!=duplicatePointIndexes[j]){
 newPointPos[numUniqPoint] = PointPos[i]
 newOrder[numUniqPoint] = Order[i]
 newMcodeUnsorted[numUniqPoint]= McodeUnsorted[i] & Mask
 numPoint++;
 }else{
 j++
 }
 }
 PointPos = newPointPos
 Order = newOrder
 McdeUnsorted = newMcodeUnsorted
 PointCount = numUniqPoint;
 }
Next, the following procedure is applied in order to compute both the level of detail reordering and the points nearest neighbours.

unprocessedPointCount = PointCount
for (i = 0; i < unprocessedPointCount; i++) {
 unprocessedPointIndexes[i] = lifting_morton_sort_skip_enabled_flag ? i : Order[i]
}

Suggested Text 2
The highlighted is additional description.
[bookmark: _GoBack]
First, if lifting_morton_sort_skip_enabled_flag equal to 0, the point sorting process based on Morton code in clause 5.9.8 is invoked. Let Order[i] be the array of point indexes sorted according to their Morton codes and McodeUnsorted the array of unsorted Morton codes.

Next, If lifting_scalability_enabled_flag is equal to 1, the following is applied and Order[] and McodeUnsorted are updated.

if (minGeomNodeSizeLog2 > 0) {
 for (i = 0; i < PointCount; i++) {
 for (axis = 0; axis < 3; axis++){
 PointPos[Order[i]][axis]&= -1 << minGeomNodeSizeLog2
 }
 for (int i = 0; i < PointCount; i++)
 for (int j = i + 1; j < PointCount; j++) {
 while (PointCount > j && PointPos[Order[i]] == PointPos[Order[j]]) {
 PointPos[Order[j]] = PointPos[PointCount-1];
 PointCount--;
 }
 }
　}
}
Next, the following procedure is applied in order to compute both the level of detail reordering and the points nearest neighbours.

unprocessedPointCount = PointCount
for (i = 0; i < unprocessedPointCount; i++) {
 unprocessedPointIndexes[i] = lifting_morton_sort_skip_enabled_flag ? i : Order[i]
}

