INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2019/m54633
June 2020, Online

	Source
	Panasonic corporation

	Status
	Input document

	Title
	[G-PCC][New] The modification on intra LoD prediction for attribute predicting transform coding

	Author
	Toshiyasu Sugio

Abstract

In this contribution, the intra LoD prediction process is proposed to be modified. It applies intra LoD prediction forcibly for top LoD layer in attribute predicting transform coding. Additionally, it is proposed not to signal the syntax parameters related to intra LoD prediction in case of single LoD layer coding.

Issue and Proposal
In the current G-PCC specification, the following parameter is signaled into APS to control intra LoD prediction in attribute predicting transform coding.

1. lifting_intra_lod_prediction_num_layers specifies number of LoD layer where decoded points in the same LoD layer could be referred to generate prediction value of target point. lifting_intra_lod_prediction_num_layers equal to LevelDetailCount indicates that target point could refer decoded points in the same LoD layer for all LoD layers. lifting_intra_lod_prediction_num_layers equal to 0 indicates that target point could not refer decoded points in the same LoD layer for any LoD layers. lifting_intra_lod_prediction_num_layers shall be in the range of 0 to LevelDetailCount.

In TMC13v10.0 software, the above parameter has not yet been implemented while intra_lod_ prediction_enabled_flag is implemented to enable intra LoD prediction for all LoD layer. Herein, we noticed that the simulation result seems to be an issue in case of intra_lod_prediction_ enabled_flag equal to 0. Table 1 shows the result of TMC13v10.0 with intra_lod_ predition_enabled_flag equal to 0 compared to CTC setting. For Cat1 case, an expected loss was observed while for Cat3 case, the performance loss is too significant. Detailed result is included in the attached excel sheet (pcc-tmc13v10.0_octree_predlift_vs_intraLoDpredoff.xlsm).
After analyzing this issue, we confirmed that single LoD layer coding is used in CTC Cat3 setting, and in such a case, when intra_prediction_enable_flag is set to equal to 0, any prediction would be not conducted then attribute value is coded directly.
[bookmark: _Ref43920411]Table 1: TMC13v10.0 with intra_lod_prediction_enabled_flag equal = 0 compared to 1 (CTC setting)
[image:]

To avoid this unexpected process, we propose the following modifications.
· Intra LoD prediction process is modified to be conducted forcibly for top LoD layer in attribute predicting transform coding.
· lifting_intra_lod_prediction_num_layers is replaced with lifting_intra_lod_prediction_ num_layers_minus1 and the variable IntraLodPredNumLayers specifying the number of LoD layer where intra lod prediction is enabled is set equal to lifting_intra_lod_prediction_ num_layers_minus1 plus 1.
· lifting_intra_lod_prediction_num_layers_minus1 could be omitted in case of single LoD layer coding.

Syntax and semantics modification on Proposal
The following is proposed syntax and semantics modifications.

7.3.2.6	Attribute parameter set syntax
	attribute_parameter_set() {
	Descriptor

		aps_attr_parameter_set_id
	ue(v)

		aps_seq_parameter_set_id
	ue(v)

		attr_coding_type
	ue(v)

		aps_attr_initial_qp_minus4
	ue(v)

		aps_attr_chroma_qp_offset
	se(v)

		aps_slice_qp_offset_present_flag
	u(1)

		if(attr_coding_type = = 0) { //RAHT
	

			raht_prediction_enabled_flag
	u(1)

			if (raht_prediction_enabled_flag) {
	

				raht_prediction_threshold0
	ue(v)

				raht_prediction_threshold1
	ue(v)

			}
	

		}
	

		else if (attr_coding_type <= 2) {
	

			lifting_num_pred_nearest_neighbours_minus1
	ue(v)

			lifting_search_range_minus1
	ue(v)

			for(k = 0; k < 3; k++)
	

				lifting_neighbour_bias_xyz[k]
	ue(v)

			if (attr_coding_type = = 2)
	

				lifting_scalability_enabled_flag
	u(1)

			if (lifting_scalability_enabled_flag)
	

				lifting_max_nn_range_minus1
	u(2)

			else {
	

				lifting_num_detail_levels_minus1
	ue(v)

				if (lifting_num_detail_levels_minus1 > 0) {
	

					lifting_lod_regular_sampling_enabled_flag
	u(1)

					for(idx = 0; idx < num_detail_levels_minus1; idx++) {
	

						if (lifting_lod_regular_sampling_enabled_flag)
	

							lifting_sampling_period_minus2[idx]
	ue(v)

						else
	

							lifting_sampling_distance_squared_scale_minus1[idx]
	ue(v)

						if (idx != 0)
	

							lifting_sampling_distance_squared_offset[idx]
	ue(v)

					}
	

				}
	

				else
	

					lifting_morton_sort_skip_enabled_flag
	u(1)

			}
	

			if(attr_coding_type = = 1) {
	

				lifting_max_num_direct_predictors
	ue(v)

				if(lifting_max_num_direct_predictors)
	

					lifting_adaptive_prediction_threshold
	ue(v)

				if(lifting_num_detail_levels_minus1 > 0)
	

					lifting_intra_lod_prediction_num_layers_minus1
	ue(v)

				inter_component_prediction_enabled_flag
	u(1)

			}
	

		}
	

		else if(attr_coding_type == 3)
	

			raw_attr_fixed_width_flag
	u(1)

		aps_extension_flag
	u(1)

		if(aps_extension_flag)
	

			while(more_data_in_byte_stream())
	

				aps_extension_data_flag
	u(1)

		byte_alignment()
	

	}
	

lifting_intra_lod_prediction_num_layers_minus1 plus 1 specifies number of LoD layer where decoded points in the same LoD layer could be referred to generate prediction value of target point. lifting_intra_lod_prediction_num_layers_minus1 plus 1 equal to LevelDetailCount indicates that target point could refer decoded points in the same LoD layer for all LoD layers. lifting_intra_lod_prediction_num_layers_minus1 plus 1 equal to 1 indicates that target point could not refer decoded points in the same LoD layer except for top LoD layer. lifting_intra_lod_prediction_num_layers_minus1 plus 1 shall be in the range of 1 to LevelDetailCount.

The variable IntraLodPredNumLayers specifying the number of LoD layer where intra lod prediction is enabled is set equal to lifting_intra_lod_prediction_num_layers_minus1 plus 1.

Experimental results

Proposed modifications were implemented on TMC13v10 software and tested under all conditions in CTC [1]. The computing platform is Linux 64bits and the executables were compiled on 64-bit Linux with gcc 5.4.2.
Table 2 shows the result of this modification. It showed that an expected loss was observed for Cat1 while for Cat3 case, there is no loss because single LoD layer is used and intra LoD prediction is conducted by this proposal. Detailed result is included in the attached excel sheet (pcc-tmc13v10.0_octree_predlift_vs_intraLoDpredoff_with_m54633.xlsm).

[bookmark: _Ref43922109]Table 2: Summarized result of proposal with intra_lod_prediction_enabled_flag equal = 0
compared to 1 (CTC setting)
[image:]

Conclusion

[bookmark: _GoBack]In this contribution, the intra LoD prediction process was proposed to be modified. It applied intra LoD prediction forcibly for top LoD layer in attribute predicting transform coding. Additionally, it was proposed not to signal the syntax parameters related to intra LoD prediction in case of single LoD layer coding. We recommend that the proposed modifications be considered to be adopted in the G-PCC specification.
[bookmark: _Ref510806353]References
[1] [bookmark: _Ref29331361] “Common Test Conditions for PCC” ISO/IEC JTC1/SC29 WG11 Doc. N19324, Alpbach, AT, April 2020

Draft text

[bookmark: _Ref3547401]8.3.2.2 Definition of computeNearestNeighbours()
Inputs of this process are:
	two variables startIndex and endIndex indicating the range of points for which the nearest neighbours should be computed
	a variable currentLayer specifying LoD layer number, where a series of the decoded geometry point belong
	an array of point indexes assignedPointIndexes[i], where i is in the range of 0 to PointCount − 1, inclusive.
	an array of Morton codes McodeUnsorted[i], where i is in the range of 0 to PointCount − 1, inclusive.
	a variable nonAssignedPointCount specifying the number of non-assigned points.
	an array of point indexes nonAssignedPointIndexes[i], where i is in the range of 0 to PointCount − 1, inclusive.
The outputs of the process are
	a series of nearest neighbours indexes neighbours[i][j], where i is in the range of 0 to PointCount − 1, inclusive, and j in the range of 0 to NumPredNearestNeighbours − 1, inclusive.
	an array of nearest neighbours counts neighboursCount[i], where i is in the range of 0 to PointCount − 1, inclusive.
	an array of nearest neighbours squared distances neighboursDistance2[i][n], where i is in the range of 0 to PointCount − 1, inclusive, and n in the range of 0 to NumPredNearestNeighbours − 1, inclusive.
The variable maxNNRange is set to lifting_max_nn_range_minus1 + 1.
The nearest neighbours of the points are computing as follows.
if (nonAssignedPointCount == 0) {
 for (i = startIndex; i < endIndex; i++)
 neighboursCount[assignedPointIndexes[i]] = 0
} else {
 j = 0
 for (i = startIndex; i < endIndex; i++) {
 currentIndex = assignedPointIndexes[i]
 currentMortonCode = McodeUnsorted[currentIndex]
 currentPos = PointPos[currentIndex]
 while (j < nonAssignedPointCount &&
 currentMortonCode >= McodeUnsorted[nonAssignedPointIndexes[j])
 j++
 }
 j = Min(nonAssignedPointCount − 1, j)
 j0 = Max(0, j − LiftingSearchRange)
 j1 = Min(nonAssignedPointCount, j + LiftingSearchRange + 1)
 neighboursCount[currentIndex] = 0
 k = 0
 for (k = j0; k < j1 ; k++) {
 neighbourIndex = nonAssignedPointIndex[k]
 neighbourPos = PointPos[neighbourIndex]
 if (lifting_scalability_enabled_flag){
 for (axis = 0; axis < 3; axis++)
 currentPos[axis] = (currentPos[axis] >> currentLayer) << currentLayer
 neighbourPos[axis] = (neighbourPos[axis] >> currentLayer) << currentLayer
 }
 }
 for (axis = 0; axis < 3; axis++)
 d[axis] = liftingNeighbourBiasStv[axis]×(currentPos[axis] – neighbourPos[axis])
 d2 = Abs(d[0]) + Abs(d[1]) + Abs(d[2])
 if (Abs(k − j) <= 3)
 insertIndex = k − j > 0 ? ((k − j) << 1) − 1 : (j − k) << 1;
 else if (k > j)
 insertIndex = 7 + k − j;
 else
 insertIndex = LiftingSearchRange + 4 + j − k;
 if (neighboursCount[currentIndex] < NumPredNearestNeighbours) {
 p = neighboursCount[currentIndex]
 neighbours[currentIndex][p] = neighbourIndex;
 neighboursDistance2[currentIndex][p] = d2
 neighboursInsertIndex[currentIndex][p] = insertIndex;
 neighboursCount[currentIndex]++
 sortNeighbours(neighboursCount[currentIndex],
 neighbours[currentIndex],
 neighboursDistance2[currentIndex] ,
 neighboursInsertIndex[currentIndex])
 } else if (d2 < neighboursDistance2[currentIndex][NumPredNearestNeighbours−1) {
 neighbours[currentIndex][NumPredNearestNeighbours−1 = neighbourIndex
 neighboursDistance2[currentIndex][NumPredNearestNeighbours−1 = d2
 neighboursInsertIndex[currentIndex][NumPredNearestNeighbours − 1] = insertIndex
 sortNeighbours(NumPredNearestNeighbours,
 neighbours[currentIndex],
 neighboursDistance2[currentIndex] ,
 neighboursInsertIndex[currentIndex]);
 } }
 if (currentLayer >= LevelDetailCount − IntraLodPredNumLayers ||
 (attr_coding_type = = 1 && nonAssignedPointCount == 0)) {
 j1 = Min(endIndex, k + LiftingSearchRange)
 for (k = i + 1; k < j1; k++) {
 neighbourIndex = assignedPointIndex[k]
 neighbourPos = PointPos[neighbourIndex]
 for (axis = 0; axis < 3; axis++)
 d[axis] = liftingNeighbourBiasStv[axis]×(currentPos[axis] – neighbourPos[axis])
 d2 = Abs(d[0]) + Abs(d[1]) + Abs(d[2])
 insertIndex = 2 × LiftingSearchRange + (k − i);
 if (neighboursCount[currentIndex] < NumPredNearestNeighbours) {
 p = neighboursCount[currentIndex]
 neighbours[currentIndex][p] = neighbourIndex
 neighboursDistance2[currentIndex][p] = d2
 neighboursInsertIndex[currentIndex][p] = insertIndex
 neighboursCount[currentIndex]++
 sortNeighbours(neighboursCount[currentIndex],
 neighbours[currentIndex],
 neighboursDistance2[currentIndex] ,
 neighboursInsertIndex[currentIndex]);
 } else if (d2 < neighboursDistance2[currentIndex][NumPredNearestNeighbours – 1]) {
 neighbours[currentIndex][NumPredNearestNeighbours – 1] = neighbourIndex
 neighboursDistance2[currentIndex][NumPredNearestNeighbours – 1] = d2
 neighboursInsertIndex[currentIndex][NumPredNearestNeighbours − 1] = insertIndex
 sortNeighbours(NumPredNearestNeighbours,
 neighbours[currentIndex],
 neighboursDistance2[currentIndex] ,
 neighboursInsertIndex[currentIndex])
 }
 }
 }
}
if (lifting_scalability_enabled_flag) {
 maxNNDistance = pow(2, currentLayer) * pow(2, currentLayer) * 3 * maxNNRange
 for (i = startIndex; i < endIndex; ++i) {
 currentIndex = assignedPointIndexes[i]
 for (j = 1; j < neighborCount[currentIndex] ; j++) {
 if (neighboursDistance2[currentIndex][j] > maxNNDistance) {
 neighboursCount[currentIndex]= j
 break;
 }
 }
 }
}

image1.emf
Geometry Colour Reflectance Total

Cat1-A average 100.0% 102.9% 102.0%

Cat1-B average 100.0% 103.0% 101.0%

Cat3-fused average 100.0% 153.9% 144.6% 125.0%

Cat3-frame average 100.0% 153.7% 110.5%

Overall average 100.0% 107.1% 150.2% 104.3%

Avg. Enc Time [%]

Avg. Dec Time [%]

Luma Chroma Cb Chroma Cr Reflectance

Cat1-A average 7.8% 7.8% 7.8%

Cat1-B average 8.1% 8.1% 8.1%

Cat3-fused average 62.1% 62.1% 62.1% 119.2%

Cat3-frame average 132.0%

Overall average 11.3% 11.3% 11.3% 128.2%

Avg. Enc Time [%]

Avg. Dec Time [%]

91%

87%

91%

89%

CY_ai

lossless geometry, near-lossless attributes [all intra]

EtE Hausdorff BD‑AttrRate [%]

CW_ai

lossless geometry, lossless attributes [all intra]

bpip ratio [%]

image2.emf
Geometry Colour Reflectance Total

Cat1-A average 100.0% 102.9% 102.0%

Cat1-B average 100.0% 103.0% 101.0%

Cat3-fused average 100.0% 100.0% 100.0% 100.0%

Cat3-frame average 100.0% 100.0% 100.0%

Overall average 100.0% 102.7% 100.0% 101.1%

Avg. Enc Time [%]

Avg. Dec Time [%]

Luma Chroma Cb Chroma Cr Reflectance

Cat1-A average 7.8% 7.8% 7.8%

Cat1-B average 8.1% 8.1% 8.1%

Cat3-fused average 0.0% 0.0% 0.0% 0.0%

Cat3-frame average 0.0%

Overall average 7.5% 7.5% 7.5% 0.0%

Avg. Enc Time [%]

Avg. Dec Time [%]

94%

90%

94%

91%

CY_ai

lossless geometry, near-lossless attributes [all intra]

EtE Hausdorff BD‑AttrRate [%]

CW_ai

lossless geometry, lossless attributes [all intra]

bpip ratio [%]

