[bookmark: _Hlk52815667]INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 7
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC 1/SC 29/WG 7 m 55368
Online – October 2020

Title: [VPCC] [EE2.6-related] Mesh Patch Data
Author: Danillo Graziosi, Alexandre Zaghetto, Ali Tabatabai

Introduction
In this contribution we introduce a new mechanism to encode meshes based on V3C coding paradigm, patch projections and atlas video coding. To achieve this goal, we introduce a new patch data unit type, the mesh patch data unit, as well as a new video component type, the vertex video component. We show that the proposed syntax can encode different mesh types, like sparse textured meshes or dense meshes with color per vertex, and additionally allows for the integration of meshes and point clouds under the V3C framework.
Coding meshes with V3C
In V3C, the encoder maps the volumetric content from 3D to 2D, arrange the projected content in maps, and subsequently encode the images using widely available video coding standards. In the case of point cloud, the projections of points are directly mapped to pixels in the atlas domain. In the case of MIV, the input are already projected images, so the pixels map directly the visual content captured with multiple cameras.
Following the projection-encode paradigm, we developed a coding scheme for meshes that consider the projection of meshes onto 2D planes and subsequent atlas creation and coding, similar to what is done for point clouds or MIV content. In the case of meshes, the basic unit is a polygon that connects points in 3D space, usually a triangle or a quad. Then just like what was done for points, that is, point classification, grouping in connected components, and projection using orthographic cameras, the same procedure can be applied to meshes, if one considers the triangle as the basic unit. So now, all the operations that were performed on a point basis should now be performed on a triangle basis. This way, the connectivity information is still preserved, and the projected images will be similar to what was generated for point clouds and can be efficiently encoded with the V3C specification.
 Codec architecture
Figure 1 provides an overview of the proposed coding scheme for meshes. At first, meshes are voxelized, if necessary (see contribution [1] for more information on mesh voxelization), then patches are generated, along with the occupancy, geometry and texture images, like what was done for point clouds. The connectivity information and vertex location are then encoded by the mesh patch data unit and/or vertex video component, and several coding options are presented in the next sections. On the decoder side, the same procedure for conformance point A is realized to decode the bitstream. For conformance point B, a new scheme to reconstruct meshes is then explained in a later section.

[image:]
Figure 1: Overview of the proposed mesh compression scheme based on V3C specification

Patch generation
For the patch generation, we also implemented a mesh segmentation following closely what was done for point clouds. Note that the procedure for mesh segmentation is an encoder-only procedure, and more optimized methods could be used.
At first, we determine the adjacency neighborhood of a triangle vertex, that is, we determine all triangles that are connected to by at least one vertex. In this way, triangles are considered “neighbors” if they share a vertex. Then we calculate the normal of each triangle, which is equal to the cross product of any two edges. Note that the winding of the triangle will determine the direction of the normal, so we don’t have the ambiguity in normal direction as we had with point clouds. The triangles are then categorized according to their normal directions, and we also follow the same 6 orientations used with point clouds (45-degree orientations are also possible but were not tested yet). The classification is further refined by checking the categories of neighboring triangles. This usually remove isolated triangles with different classification, as shown in Figure 2.

[image:]
Figure 2: Triangle classification refinement
Next, adjacent triangles are aggregated into connected components, and then the area of the projected connected component is verified against a user-defined threshold. If this area is smaller than a certain value, the triangles are removed from the list and will be coded with a different coding scheme, called triangle patch data unit (more details in [2]), that can be more efficient to represent isolated small triangles than the proposed mesh patch data unit.
For the triangles inside the connected component, each vertex will be projected onto the projection plane only if the sample location is vacant, that is, there is no vertex or surface already projected into that location. If the location is already occupied, that indicates a self-occlusion of the mesh, so the triangle is removed from the connected component and goes back to the list.
For the projected triangles, the surface is rasterized to create the occupancy/geometry/attribute images, as shown in Figure 3. Moreover, the locations of the vertices in the 2D patch plane are stored in the mesh patch data unit or in the vertex video data sub-bitstream for subsequent coding. Notice that the location of vertices in the atlas image is equivalent to the UV coordinates of the vertex on textured meshes. Furthermore, the rasterized pixels of the mesh surface can be interpreted as a point cloud on the mesh surface, meaning that we could, for the mesh representation, obtain the mesh object, as well as the point cloud object, without the need to send any extra information.

[image:]
Figure 3: Triangle rasterization

V3C image generation
With the rasterized triangles, the projected occupancy, geometry and attribute images can be created, as shown in Figure 4. In the case of meshes, the original texture is used to create the texture image, instead of the recolored one, similar to what was done in MIV, but a recoloring scheme like the one used for point clouds could be devised. For instance, Meshlab contains an attribute transfer filter to color a mesh using geometry and color from a different mesh. Another interesting aspect of meshes is that, since the structure is being transmitted as well, the occupancy map is not necessary anymore, and the mesh connectivity can be used to trim additional decoded points.

[image:]
Figure 4: Image creation from mesh rasterization

Mesh Patch Data
Syntax
	mesh_patch_data_unit(tileID, patchIdx) {
	Descriptor

		mpdu_2d_pos_x[tileID][patchIdx]
	u(v)

		mpdu_2d_pos_y[tileID][patchIdx]
	u(v)

		mpdu_2d_size_x_minus1[tileID][patchIdx]
	se(v)

		mpdu_2d_size_y_minus1[tileID][patchIdx]
	se(v)

		mpdu_3d_offset_u[tileID][patchIdx]
	u(v)

		mpdu_3d_offset_v[tileID][patchIdx]
	u(v)

		mpdu_3d_offset_d[tileID][patchIdx]
	u(v)

		if(asps_normal_axis_max_delta_value_enabled_flag)
	

			mpdu_3d_range_d[tileID][patchIdx]
	u(v)

		mpdu_projection_id[tileID][patchIdx]
	u(v)

		mpdu_orientation_index[tileID][patchIdx]
	u(v)

		if(afps_lod_mode_enabled_flag)
	

			mpdu_lod_enabled_flag[tileID][patchIdx]
	u(1)

			if(mpdu_lod_enabled_flag[tileID][patchIdx] > 0) {
	

				mpdu_lod_scale_x_minus1[tileID][patchIdx]
	ue(v)

				mpdu_lod_scale_y_idc[tileID][patchIdx]
	ue(v)

			}
	

		}
	

		if(asps_mesh_binary_coding_enabled_flag)
	

			mpdu_binary_object_present_flag[tileID][patchIdx]
	u(1)

		if(mpdu_binary_object_present_flag[tileID][patchIdx]) {
	

			mpdu_mesh_binary_object_size_bytes[tileID][patchIdx]
	ue(v)

			for(i = 0; i < mpdu_mesh_payload_size_bytes[tileID][patchIdx]; i++)
	

				mpdu_mesh_binary_object[tileID][patchIdx][i]
	b(8)

		} else {
	

			mpdu_vertex_count_minus3[tileID][patchIdx]
	ue(v)

			mpdu_face_count[tileID][patchIdx]
	ue(v)

			for(i = 0; i < mpdu_faces_count[tileID][patchIdx]; i++) {
	

				mpdu_face_vertex[tileID][patchIdx][i][0]
	u(v)

				mpdu_face_vertex[tileID][patchIdx][i][1]
	u(v)

				mpdu_face_vertex[tileID][patchIdx][i][2]
	u(v)

				if(asps_mesh_quad_face_flag) {
	

					mpdu_face_vertex[tileID][patchIdx][i][3]
	u(v)

			}
	

			if(!asps_mesh_vertices_in_vertex_video_data) {
	

				for(i = 0; i < mpdu_vertex_count_minus3[tileID][patchIdx] +3 ; i++) {
	

					mpdu_vertex_pos_x[tileID][patchIdx][i]
	u(v)

					mpdu_vertex_pos_y[tileID][patchIdx][i]
	u(v)

				}
	

	 		 }
	

		}
	

	}
	

Semantics
mpdu_binary_object_present_flag[tileID][p] equal to 1 specifies that the syntax elements mpdu_mesh_binary_object_size_bytes[tileID][p] and mpdu_mesh_binary_object[tileID][p][i] are present for the patch with index p of the current atlas tile, with tile ID equal to tileID. If mpdu_binary_object_present_flag[tileID][p] is equal to 0, the syntax elements mpdu_mesh_binary_object_size_bytes[tileID][p] and mpdu_mesh_binary_object[tileID][p][i] are not present for the current patch. If mpdu_binary_object_present_flag[tileID][p] is not present, its value shall be inferred to be equal to 0.
mpdu_mesh_binary_object_size_bytes[tileID][p] specifies the number of bytes used to represent the mesh information in binary form for the patch with index p of the current atlas tile, with tile ID equal to tileID.
mpdu_mesh_binary_object[tileID][p][i] specifies the i-byte of the binary representation of the mesh for patch with index p of the current atlas tile, with tile ID equal to tileID.
mpdu_vertex_count_minus3[tileID][p] plus 3 specifies the number of vertices present in the patch with index p of the current atlas tile, with tile ID equal to tileID.
mpdu_face_count[tileID][p] specifies the number of triangles present in the patch with index p of the current atlas tile, with tile ID equal to tileID. When not present, the value of mpdu_face_count[tileID][p] shall be zero.
mpdu_face_vertex[tileID][p][i][k] specifies the k-th value of the vertex index for the i-th triangle or quad for the current patch with index p of the current atlas tile, with tile ID equal to tileID. The value of mpdu_face_vertex[tileID][p][i][k] shall be in the range of 0 to mpdu_vert_count_minus3[tileID][p] + 2, inclusive.
mpdu_vertex_pos_x[tileID][p][i] specifies the value of the x-coordinate of the i-th vertex for the current patch with index p of the current atlas tile, with tile ID equal to tileID. The value of mpdu_vertex_pos_x[p][i] shall be in the range of 0 to mpdu_2d_size_x_minus1[tileID][p], inclusive.
mpdu_vertex_pos_y[tileID][p][i] specifies the value of the y-coordinate of the i-th vertex for the current patch p of the current atlas tile, with tile ID equal to tileID. The value of mpdu_vertex_pos_y[tileID][p][i] shall be in the range of 0 to mpdu_2d_size_y_minus1[tileID][p], inclusive.

ASPS Mesh extension
Syntax
	atlas_sequence_parameter_set_rbsp() {
	Descriptor

		…
	

		asps_extension_present_flag
	u(1)

		if(asps_extension_present_flag) {
	

			asps_vpcc_extension_present_flag
	u(1)

			asps_mesh_extension_present_flag
	u(1)

			asps_extension_6bits
	u(6)

		}
	

		if(asps_vpcc_extension_present_flag)
	

			asps_vpcc_extension() /* Specified in Annex H*/
	

		if(asps_mesh_extension_present_flag)
	

			asps_mesh_extension()
	

		if(asps_extension_6bits)
	

			while(more_rbsp_data())
	

				asps_extension_data_flag
	u(1)

		rbsp_trailing_bits()
	

	}
	

	asps_mesh_extension() {
	Descriptor

		asps_mesh_binary_coding_enabled_flag
	u(1)

		if(asps_mesh_binary_coding_enabled_flag)
	

			asps_mesh_binary_codec_id
	u(8)

		asps_mesh_quad_face_flag
	u(1)

		asps_mesh_vertices_in_vertex_video_data_flag
	u(1)

	}
	

Semantics
asps_mesh_extension_present_flag equal to 1 specifies that the asps_mesh_extension() syntax structure is present in the atlas_sequence_parameter_set_rbsp syntax structure. asps_mesh_extension_present_flag equal to 0 specifies that this syntax structure is not present. When not present, the value of asps_mesh_extension_present_flag is inferred to be equal to 0.
asps_extension_6bits equal to 0 specifies that no asps_extension_data_flag syntax elements are present in the ASPS RBSP syntax structure. When present, asps_extension_6bits shall be equal to 0 in bitstreams conforming to this version of this document. Values of asps_extension_6bits not equal to 0 are reserved for future use by ISO/IEC. Decoders shall allow the value of asps_extension_6bits to be not equal to 0 and shall ignore all asps_extension_data_flag syntax elements in an ASPS NAL unit. When not present, the value of asps_extension_6bits is inferred to be equal to 0.
asps_mesh_binary_coding_enabled_flag equal to 1 indicates that vertex and connectivity information associated to a patch is present in binary format. asps_mesh_binary_coding_enabled_flag equal to 0 specifies that the mesh vertex and connectivity data is not present in binary format. When not present, asps_mesh_binary_coding_enabled_flag is inferred to be 0.
asps_mesh_binary_codec_id indicates the identifier of the codec used to compress the vertex and connectivity information for patch. asps_mesh_binary_codec_id shall be in the range of 0 to 255, inclusive. This codec may be identified through the profiles defined in Annex A, or through means outside this document.
asps_mesh_quad_face_flag equal to 1 indicates that quads are used for the polygon representation. asps_mesh_quad_face_flag equal to 0 indicates that triangles are used for the polygon representation of meshes. When not present, the value of asps_mesh_quad_flag is inferred to be equal to 0.
asps_mesh_vertices_in_vertex_video_data_flag equal to 1 indicates that the vertex information is present in vertex video data. asps_mesh_vertices_in_vertex_flag equal to 0 indicates that vertex information is present in the patch data. When not present, the value of asps_mesh_vertices_in_vertex_map_flag is inferred to be equal to 0.

	MeshCodec
	asps_mesh_binary_codec_idc
	Descriptor

	SC3DM
	0
	SC3DM (MPEG) codec

	Draco
	1
	Draco (Google) codec

	Reserved
	4..255
	–

Patch Information
Syntax
	patch_information_data(tileID, patchIdx, patchMode) {
	Descriptor

		if(ath_type == P_TILE) {
	

			if(patchMode == P_SKIP)
	

				skip_patch_data_unit()
	

			else if(patchMode == P_MERGE)
	

				merge_patch_data_unit(tileID, patchIdx)
	

			else if(patchMode == P_INTRA)
	

				patch_data_unit(tileID, patchIdx)
	

			else if(patchMode == P_MESH)
	

				mesh_patch_data_unit(tileID, patchIdx)
	

			else if(patchMode == P_TRIANGLE)
	

				triangle_patch_data_unit(tileID, patchIdx)
	

			else if(patchMode == P_TRACKED_MESH)
	

				tracked_mesh_patch_data_unit(tileID, patchIdx)
	

			else if(patchMode == P_INTER)
	

				inter_patch_data_unit(tileID, patchIdx)
	

			else if(patchMode == P_RAW)
	

				raw_patch_data_unit(tileID, patchIdx)
	

			else if(patchMode == P_EOM)
	

				eom_patch_data_unit(tileID, patchIdx)
	

		}
	

		else if(ath_type == I_TILE) {
	

			if(patchMode == I_INTRA)
	

				patch_data_unit(tileID, patchIdx)
	

			if(patchMode == I_MESH)
	

				mesh_patch_data_unit(tileID, patchIdx)
	

			else if(patchMode == P_TRIANGLE)
	

				triangle_patch_data_unit(tileID, patchIdx)
	

			else if(patchMode == I_RAW)
	

				raw_patch_data_unit(tileID, patchIdx)
	

			else if(patchMode == I_EOM)
	

				eom_patch_data_unit(tileID, patchIdx)
	

		}
	

	}
	

	atdu_patch_mode[tileID][p]
	Identifier
	Description

	0
	I_INTRA
	Non-predicted patch mode

	1
	I_RAW
	RAW Point Patch mode

	2
	I_EOM
	EOM Point Patch mode

	3
	I_MESH
	MESH Patch mode

	4
	I_TRIANGLE
	TRIANGLE Patch mode

	5-13
	I_RESERVED
	Reserved modes for future use by ISO/IEC

	14
	I_END
	Patch termination mode

	atdu_patch_mode[tileID][p]
	Identifier
	Description

	0
	P_SKIP
	Patch Skip mode

	1
	P_MERGE
	Patch Merge mode

	2
	P_INTER
	Inter predicted Patch mode

	3
	P_INTRA
	Non-predicted Patch mode

	4
	P_RAW
	RAW Point Patch mode

	5
	P_EOM
	EOM Point Patch mode

	6
	P_MESH
	MESH Patch mode

	7
	P_TRIANGLE
	TRIANGLE Patch mode

	8
	P_TRACKED_MESH
	TRACKED MESH Patch mode

	9-13
	P_RESERVED
	Reserved modes for future use by ISO/IEC

	14
	P_END
	Patch termination mode

Vertex Video Sub-bitstream
This new V3C video data unit carries information of the location of vertices. The vertex video data can contain binary values indicating the location of the projected vertices or can also contain multi-level information to be used for connectivity reconstruction. Additionally, multi-level representation is used to implement level-of-detail coding of vertices (also known in the literature as progressive mesh coding). For some cases, the vertex information can be packed on the occupancy map video stream, albeit without multi-level representation. These options are defined in a mesh extension, inside the VPS
Syntax
	v3c_unit_header() {
	Descriptor

		vuh_unit_type
	u(5)

		if(vuh_unit_type == V3C_AVD || vuh_unit_type == V3C_GVD ||
		vuh_unit_type == V3C_OVD || vuh_unit_type == V3C_AD ||
		 vuh_unit_type == V3C_VVD) {
	

			vuh_v3c_parameter_set_id
	u(4)

			vuh_atlas_id
	u(6)

		}
	

		if(vuh_unit_type == V3C_AVD) {
	

			vuh_attribute_index
	u(7)

			vuh_attribute_partition_index
	u(5)

			vuh_map_index
	u(4)

			vuh_auxiliary_video_flag
	u(1)

		} else if(vuh_unit_type == V3C_GVD) {
	

			vuh_map_index
	u(4)

			vuh_auxiliary_video_flag
	u(1)

			vuh_reserved_zero_12bits
	u(12)

		} else if(vuh_unit_type == V3C_VVD) {
	

			vuh_lod_index
	u(4)

			vuh_reserved_zero_13bits
	u(13)

		} else if(vuh_unit_type == V3C_OVD || vuh_unit_type == V3C_AD)
	

			vuh_reserved_zero_17bits
	u(17)

		else
	

			vuh_reserved_zero_27bits
	u(27)

	}
	

	v3c_unit_payload(numBytesInV3CPayload) {
	Descriptor

		if(vuh_unit_type == V3C_VPS)
	

			v3c_parameter_set(numBytesInV3CPayload)
	

		else if(vuh_unit_type == V3C_AD)
	

			atlas_sub_bitstream(numBytesInV3CPayload)
	

		else if(vuh_unit_type == V3C_OVD || vuh_unit_type == V3C_GVD ||
			vuh_unit_type == V3C_AVD|| vuh_unit_type == V3C_VVD)
	

			video_sub_bitstream(numBytesInV3CPayload)
	

	}
	

	vps_mesh_extension() {
	Descriptor

		for(k = 0 ; k <= vps_atlas_count_minus1; k++) {
	

			vme_lod_count_minus1[k]
	u(4)

			if(vme_num_lod_minus1[k] == 0)
	

				vme_embed_vertex_in_occupancy_flag[k]
	u(1)

			if(!vme_embed_vertex_in_occupancy_flag[k]){
	

				vme_multiple_lod_streams_present_flag[k]
	u(1)

				vme_lod_absolute_coding_enabled_flag[j][0] = 1
	

				vme_lod_predictor_index_diff[k][0] = 0
	

				for(i = 1; i <= vme_num_lod_minus1[k]; i++) {
	

					if(vme_multiple_lod_streams_present_flag[k])
	

						vme_lod_absolute_coding_enabled_flag[k][i]
	u(1)

					else
	

						vme_lod_absolute_coding_enabled_flag[k][i] = 1
	

					if(vme_lod_absolute_coding_enabled_flag[k][i] == 0)
	

						vme_lod_predictor_index_diff[k][i]
	ue(v)

				}
	

				vme_vertex_video_present_flag[k]
	u(1)

				if(vme_vertex_video_present_flag[k])
	

					vertex_information(vps_atlas_id[k])
	

			}
	

		}
	

	}
	

	vertex_information(atlasID) {
	Descriptor

		vi_vertex_codec_id[atlasID]
	u(8)

		vi_lossy_vertex_compression_threshold[atlasID]
	u(8)

		vi_vertex_2d_bit_depth_minus1[atlasID]
	u(5)

		vi_vertex_MSB_align_flag[atlasID]
	u(1)

	}
	

Semantics
vuh_lod_index when present, indicates the lod index of the current vertex stream. When not present, the lod index of the current vertex sub-bitstream is derived based on the type of the sub-bitstream and the operations described in subclause X.X for vertex video sub-bitstreams respectively. The value of vuh_lod_index, when present, shall be in the range of 0 to vms_lod_count_minus1[vuh_atlas_id], inclusive.
vuh_reserved_zero_13bits, when present, shall be equal to 0 in bitstreams conforming to this version of this document. Other values for vuh_reserved_zero_13bits are reserved for future use by ISO/IEC. Decoders shall ignore the value of vuh_reserved_zero_13bits.
vme_lod_count_minus1[k] plus 1 indicates the number of lods used for encoding the vertex data for the atlas with atlas ID k. vme_lod_count_minus1[k] shall be in the range of 0 to 15, inclusive.
vme_embed_vertex_in_occupancy_flag[k] equal to 1 specifies that vertex information is derived from occupancy map as specified in clause XX for the atlas with atlas ID k. vme_embed_vertex_in_occupancy_flag[k] equal to 0 specifies that the vertex information is not derived from the occupancy video. When vme_embed_vertex_in_occupancy_flag[k] is not present, it is inferred to be equal to 0.
vme_multiple_lod_streams_present_flag[k] equal to 0 indicates that all lods for the atlas with atlas ID k are placed in a single vertex video stream, respectively. vme_multiple_lod_streams_present_flag[k] equal to 1 indicates that all lods for the atlas with atlas ID k are placed in separate video streams. When vme_multiple_lod_streams_present_flag[k] is not present, its value shall be inferred to be equal to 0.
vme_lod_absolute_coding_enabled_flag[k][i] equal to 1 indicates that the lod with index i for the atlas with atlas ID k is coded without any form of map prediction. vme_lod_absolute_coding_enabled_flag[k][i]equal to 0 indicates that the lod with index i for the atlas with atlas ID k is first predicted from another, earlier coded, map prior to coding. If vme_lod_absolute_coding_enabled_flag[k][i] is not present, its value shall be inferred to be equal to 1.
vme_lod_predictor_index_diff[k][i] is used to compute the predictor of the lod with index i for the atlas with atlas ID k when vps_map_absolute_coding_enabled_flag[j][i] is equal to 0. More specifically, the map predictor index for lod i, LodPredictorIndex[i], shall be computed as:
	LodPredictorIndex[i] = (i – 1) – vme_lod_predictor_index_diff[j][i]	(15)
The value of vme_lod_predictor_index_diff[j][i] shall be in the range from 0 to i – 1, inclusive. When vme_lod_predictor_index_diff[j][i] is not present, its value shall be inferred to be equal to 0.
vme_vertex_video_present_flag[k] equal to 0 indicates that the atlas with ID k does not have vertex data. vms_vertex_video_present_flag[k] equal to 1 indicates that the atlas with ID k has vertex data. When vms_vertex_video_present_flag[j] is not present, it is inferred to be equal to 0.
vi_vertex_codec_id[j] indicates the identifier of the codec used to compress the vertex information for the atlas with atlas ID j. vi_vertex_codec_id[j] shall be in the range of 0 to 255, inclusive. This codec may be identified through the profiles defined in Annex A, a component codec mapping SEI message, or through means outside this document.
vi_lossy_vertex_compression_threshold[j] indicates the threshold to be used to derive the binary vertex from the decoded vertex video for the atlas with atlas ID j. vi_lossy_vertex_compression_threshold[j] shall be in the range of 0 to 255, inclusive.
vi_vertex_2d_bit_depth_minus1[j] plus 1 indicates the nominal 2D bit depth to which the vertex video for the atlas with atlas ID j shall be converted to. vi_vertex_2d_bit_depth_minus1[j] shall be in the range of 0 to 31, inclusive.
vi_vertex_MSB_align_flag[j] indicates how the decoded vertex video samples associated with an atlas with atlas ID j are converted to samples at the nominal vertex bit depth, as specified in Annex B.

Mesh Patch coding
With the proposed syntax, there are 4 different ways of coding the vertex and connectivity information: direct coding, vertex video and patch connectivity coding, vertex video only, or using an external mesh encoder. The following sub-sections provide more details on the encoding methods.
Direct coding
Vertex location and connectivity is encoded directly on the patch. The number of bits used to represent connectivity is limited by the number of vertices, and the number of bits for the vertex location is determined by the size of the patch. Notice that improvements could be done for the coding of triangles. For example, if only three vertices are present, the triangle information does not need to be send.
Vertex video + Connectivity
In this option, we use a video sequence to encode the position of vertices. The vertex list is read from the video data, and the triangle list is sent using the patch data. In this case, we also benefit from the fact that temporal correlations of vertices positions can be exploited by the video encoder. Furthermore, to reduce the number of additional video streams, this information can be packed in the occupancy map. We implemented also an option to send a codeword, in case the occupancy map resolution is divided by 2, to still be able to recover the position of the vertices even with down-sampled data. Figure 5 shows the vertex video data in a separate video, and also packed into the occupancy image.

	[image: A picture containing background pattern

Description automatically generated]
(a) Vertex video data
	[image: A picture containing fabric, rug, graffiti

Description automatically generated]
(b) Vertex data in occupancy video

Figure 5: Vertex video data coding

Vertex video only
In some cases, the connectivity may be able to be reconstructed at the decoder side by just reconstructing surfaces using the vertex list. This is usually the case to generate meshes from point clouds, and methods like Poisson Surface reconstruction and Ball Pivoting are usually successfully used to transform oriented point clouds into meshes. We implemented in the proposed software the ball pivoting method calling meshlabserver from inside the software. Some issues are still to be solved, for example, the patches are provided without normal, which can result in triangles with wrong winding. Furthermore, the ball pivoting algorithm is not using the knowledge of border pixels, so the current results presented could be improved, if further patch information beyond only vertices location is also used to reconstruct the connectivity.
External mesh encoder
[bookmark: _GoBack]Each patch connectivity and vertices location can be encoded with an external mesh encoder, like MPEG’s SC3DM[5] or Google’s Draco[6]. We integrated both encoders in the software and allowed for the choice of coding the patch information using the selected mesh encoder. The input mesh for the external mesh encoders is a mesh that contains zero in all z coordinates. Furthermore, in the case of Draco, the PLY file can indicate the coordinate as an integer, which allows for lossless coding. With SC3DM, we used the TFAN coding mode, but still the position in the patch of the vertices could not be coded lossless. Moreover, there is an additional 92 bytes overhead to send the header information.
Mesh Reconstruction
The mesh reconstruction creates a final list of vertices and triangles from the decoded patches. In order to merge the connectivity from each patch, it is necessary to renumber the vertices references used by connectivity by adding an offset value. Figure 6 shows a schematic on how the merged mesh could be formed. One issue with the proposed method is that vertices get duplicated due to mesh segmentation. Furthermore, compression might result in disconnections between the reconstructed patches. However, filtering methods to improve topology reconstruction can be applied, like the zippering filtering method proposed in [4].

[image:]
Figure 6: Reconstructing mesh by merging patch data

Simulations Results
See attached slides for an extensive discussion on several simulation scenarios.
Conclusion
In this contribution, we have shown that meshes can be encoded following the same paradigm established in V3C to project volumetric content. The projection of meshes open several new possibilities to develop tools for triangle content (similar to what happened for point cloud coding). Another very interesting aspect of this contribution is the fact that the proposed syntax allows for a seamless integration between point cloud and mesh content, allowing the generation of content with mixed characteristics, like shown in Figure 7.

[image:]
Figure 7: Mixed point cloud and mesh content representation

We would like the group to consider the new mesh patch data and the vertex video sub-bitstream for mesh encoding.
[bookmark: _Hlk52891567]References
1. m55367, “[V-PCC][EE2.6-related] Mesh Voxelization” ISO/IEC JTC1/SC29/WG11, online, October 2020.
1. m55370, “[V-PCC][EE2.6-related] Triangle Patch Data” ISO/IEC JTC1/SC29/WG11, online, October 2020.
1. m55372, “[V-PCC][EE2.6-related] Tracked Mesh Patch Data” ISO/IEC JTC1/SC29/WG11, online, October 2020.
1. m55374, “[V-PCC][EE2.6-related] Mesh Geometry Smoothing Filter” ISO/IEC JTC1/SC29/WG11, online, October 2020.
1. Mamou, Khaled, Titus Zaharia, and Françoise Prêteux. "TFAN: A low complexity 3D mesh compression algorithm." Computer Animation and Virtual Worlds 20.2‐3 (2009): 343-354.
1. Google, "Draco 3D graphics compression," 2017-2020. [Online]. Available: https://google.github.io/draco/.
image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

