[bookmark: _Hlk52815667]INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 7
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC 1/SC 29/WG 7 m 55370
Online – October 2020

Title: [VPCC] [EE2.6-related] Triangle Patch Data
Author: Danillo Graziosi, Alexandre Zaghetto, Ali Tabatabai

Abstract
In this contribution, we introduce a new mechanism to encode parts of meshes that cannot be efficiently compressed via patch projection. This patch type is complementary to the mesh patch data and increases the tools available for mesh coding.

Introduction
Coding of meshes using projections may have some limitations. For instance, the projection of dense meshes may create overlapped triangles, that will need to be coded in separate patches. Furthermore, dense meshes may have neighboring triangles with different classification, which could potentially separate connected polygons and generate isolated patches, as shown in Figure 1. This increases the number of patches and the image size, since each patch might have very small area (maybe 3 pixels only), but the block packing uses at least N x N pixels. For instance, longdress dense mesh dataset coded using mesh patches only may generate V3C component images of size 1,280 x 18,256.

[image: A picture containing sitting, dark, lit, holding

Description automatically generated]
Figure 1: Classification of triangles for dense meshes

In this contribution, we propose a new patch for coding of isolated triangles called TRIANGLE PATCH DATA. Like the RAW patch, we encode the vertex position directly on the video signal. Syntax elements in the triangle patch data indicate how to reconstruct the mesh connectivity. Additionally, we introduce a new packing method to improve color representation.
Triangle Patch Data
Triangle Patch Data syntax
	triangle_patch_data_unit(tileID, patchIdx) {
	Descriptor

		if(AuxTileHeight[TileIDToIndex[tileID]] > 0)
	

			tpdu_patch_in_auxiliary_video_flag[tileID][patchIdx]
	u(1)

		tpdu_2d_pos_x[tileID][patchIdx]
	ue(v)

		tpdu_2d_pos_y[tileID][patchIdx]
	ue(v)

		tpdu_2d_size_x_minus1[tileID][patchIdx]
	ue(v)

		tpdu_2d_size_y_minus1[tileID][patchIdx]
	ue(v)

		tpdu_3d_offset_u[tileID][patchIdx]
	u(v)

		tpdu_3d_offset_v[tileID][patchIdx]
	u(v)

		tpdu_3d_offset_d[tileID][patchIdx]
	u(v)

		tpdu_vertices_minus3[tileID][patchIdx]
	ue(v)

		tpdu_primitive_idc[tileID][patchIdx]
	u(8)

		tpdu_color_expansion_flag[tileID][patchIdx]
	u(1)

	}
	

Triangle Patch Data semantics
tpdu_vertices_minus3[tileID][p] plus 3 specifies the number of vertices present in the triangle coded patch with index p in the current atlas tile, with tile ID equal to tileID. The value of tpdu_vertices_minus3[tileID][p] shall be in the range of 0 to ((tpdu_2d_size_x_minus1[tileID][p] + 1) * (tpdu_2d_size_y_minus1[tileID][p] + 1)) / 3 − 3, inclusive.
tpdu_primitive_idc[tileID][p] indicates the geometry primitive that defines how triangles are obtained from the vertices present in the coded patch with index p in the current atlas tile, with tile ID equal to tileID. If tpdu_primitive_idc[tileID][p] is not present, its value shall be inferred to be equal to 0.
tpdu_color_expansion_flag[tileID][p] equal to 1 specifies that the coordinates of the vertices are packed line-interleaved, and the color values are expanded for the current patch p of the current atlas tile, with tile ID equal to tileID. If tpdu_color_expansion_flag[tileID][p] is equal to 0, the coordinates of the vertices are packed sequentially, and the color is not expanded for the current patch. If tpdu_color_expansion_flag[tileID][p] is not present, its value shall be inferred to be equal to 0.

Triangle primitives
Since the triangle patch can represent a collection of triangles, we indicate the relationship between those triangles by the primitive syntax element. A similar concept is used in OpenGL [1], to define the list of triangles given a list of vertices and is commonly used to compress the connectivity information. Currently, the syntax element allows for three different primitives:
1. Separate triangles
· Every three vertices determine a triangle: (0 1 2), (3 4 5), (6 7 8)

2. Triangle strip:
· Every new vertex creates a new triangle with the previous 2 vertices: (0 1 2), (2 1 3), (2 3 4)
3. Triangle fan
· Every two new vertices create a new triangle centered around the first vertex: (0 1 2), (0 2 3), (0 3 4)
OBS: It is possible to create triangle strips of unconnected triangles by vertex repetition and degenerate triangles [2].

[image: Introduction to Computer Graphics, Section 3.1 -- Shapes and Colors in OpenGL 1.1]
Figure 2: Triangle primitives from OpenGL

Vertices packing
In this new patch type, we also define two different methods for information packing:
(0) component packing:
· similar packing to RAW patches
(1) line packing:
· a line is assigned for each coordinate.

The line packing option also indicates that the color will be expanded. This might be necessary for textured meshes, because of UV interpolation artifacts. If no expansion is used, colors are written sequentially (C0 C1 C2, shown in Figure 3(a)). Otherwise they are written in the following way:

where is the color value of the centroid position of the triangle, equivalent to the average color of the three vertices. With color expansion, the UV coordinates of the reconstructed vertices should point to the center pixel, instead of the vertex location.

	[image:]
(a) component packing
	[image:]
(b) line packing

Figure 3: Packing of geometry and attribute information for triangle patch data

Triangle collection
Here we describe a method to create triangle patches from a list of triangles. The list is generated during segmentation, where triangles or mesh connected components that do not cover a user-defined area are removed from the list of projected triangles. The triangles will be collected into a single patch, according to their position in space and the bit depth of the geometry video. For instance, it is possible to encode 10-bit data using 8-bit video signals, by sending the difference between the vertex 3D position and a reference 3D point.
First, we need to guarantee that the coordinates of all three vertices of a triangle can be represented by the triangle patch, that is, the bit depth used to represent the vertices coordinates has to be able to represent all three coordinates of the triangle. Therefore, we calculate the bounding box of each triangle and check if the size of the triangle bounding box is larger than the pre-defined bit depth. In the case of a bounding box larger than a pre-defined but depth, the triangle will not be able to be coded using the triangle patch data unit and is removed from the list.
Given the remaining list of triangles, the following procedure explains how to collect the triangle into triangle patch data (see Figure 4).
While the list of triangles is not empty, do the following
1. Create a “selection bounding box” with pre-defined size (2numBits-1) centered at the center of the bounding box of the first triangle of the list. The minimum and maximum points of the “selection bounding box” are clipped into the 3d bit depth range. The minim point will be used as a 3d offset for the triangle patch.
2. Now loop over all the triangles and for each triangle, check if the “selection bounding box” contains the triangle’s bounding box. If it contains, that is, the triangle is entirely inside the “selection bounding box” volume, then the triangle is added to the triangle patch and removed from the list of triangles.

[image:]
Figure 4: Triangles collected into two triangle patches

Experimental results
Here we present result for just one frame of the longdress sequence. Different coding scenarios will be discussed in the next subsections.
Lossless coding of dense meshes without using color expansion
The reconstructed mesh in our solution has two types of color attributes: per vertex color attributes or UV texture attributes. When visualizing the reconstructed mesh using UV texture in Meshlab, we noticed some issues with the mesh color, as shown in Figure 5. However, the color was well reproduced when using per vertex color instead of UV. This is because for UV texture, coordinates are represented in floating point, and when the renderer reads out the UV texture, it usually performs interpolation with the color value of the four nearest positions, since it is assumed that texel colors are similar. However, with triangle patches, the vertex colors of triangles can vary significantly, since the neighboring color may belong to a triangle situated far away.

[image:]
Figure 5: Visualization using UV texture

Lossless coding of dense meshes with color expansion
With color expansion, we set the vertex UV coordinate to be equal to the center pixel, that is, to the center in the middle line, but still set the vertex color to the correct color value. As shown in Figure 6, the reconstructed point cloud, when visualized using UV texture, does not present any visible artifacts. When visualizing the mesh using color vertex, the same result as before was observed.

[image:]
Figure 6: Reconstructed mesh using color expansion
One downside of this approach is the increased data rate for attribute coding. In the lossless case, the video image went from 4,463,742 bytes to 7,783,919 bytes, since now we do not have large empty areas, as seen in Figure 7.

	[image: A close up of a bench

Description automatically generated]
(a) without color expansion
	[image:]
(b) with color expansion

Figure 7: Texture video component for longdress dense mesh (1 frame)

Lossy texture coding of dense meshes with color expansion
We show here results for color expansion and lossy coding of attribute, using YUV420 chroma format and rate point R5. Figure 8 shows the results of the reconstructed mesh, using UV texture coordinates. Notice that the reconstructed quality is similar to the lossless coding scenario, with no noticeable artifacts, and now the bitrate has been reduced from 7,783,919 bytes down to 1,138,271 bytes, which is less even then when lossless coding was used without color expansion.

[image:]
Figure 8: Lossy attribute compression with color expansion

Coding of sparse meshes
The triangle patch can be applied to sparse meshes as well, but the color suffers, since the whole surface will be represented by the interpolation of three colors. However, the color technique expansion can be used to improve texture quality. Figure 9 shows a comparison of the reconstructed mesh using vertex color, using UV texture with and without color expansion. Notice that artifacts on the shoulder of the model are reduced with the color expansion technique.

	[image: A picture containing person, holding, dark, dress

Description automatically generated]
(a) Vertex color
	[image: A person smiling for the camera

Description automatically generated]
(b) UV texture without color expansion
	[image: A person who is smiling and looking at the camera

Description automatically generated]
(c) UV texture with color expansion

Figure 9: Sparse mesh coding using triangle patches
[bookmark: _GoBack]Conclusion
In this contribution, we have described a tool for mesh coding that is suitable for smaller triangles with little color variation between the vertices, commonly the case for dense meshes. The new proposed patch has characteristics similar to existing RAW patches, and can be coded lossless or lossy, as well as coded in regular or auxiliary video. Additionally, we presented a method to improve color representation of triangle patches, allowing for good reconstruction quality, even using 420 lossy color coding. Coding of triangle patch data can be further improved by ordering triangles according to the centroid color value (implementation is on-going)

We suggest the group to investigate this tool further.

References
1. https://www.khronos.org/opengl/wiki/Primitive
1. Evans, Francine, Steven Skiena, and Amitabh Varshney. "Optimizing triangle strips for fast rendering." Proceedings of Seventh Annual IEEE Visualization'96. IEEE, 1996.

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

