[bookmark: _Hlk52815667]INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 7
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC 1/SC 29/WG 7 m 55372
Online – October 2020

Title: [VPCC] [EE2.6-related] Tracked Mesh Patch Data
Author: Danillo Graziosi, Alexandre Zaghetto, Ali Tabatabai

Abstract
In this contribution we propose a new patch type to be used for tracked meshes. We claim that tracked meshes of real-world objects are becoming popular, and with improved mesh tracking techniques based on ML, tracked mesh content will become more widely available. We propose a patch structure to capture the tracking features and suggest to the group to consider tracked mesh data as well.
Introduction
Mesh tracking is part of several volumetric capture pipeline proposed in academia and industry [1][2]. It has also significantly improved its performance, with the utilization of advance deep learning techniques, making it possible to capture human performance with extreme realism [3].

[image:]
Figure 1: Deepcap [3] performance capture based on neural networks

Mesh tracking improves rendering quality and provides higher compression, since the mesh connectivity does not need to be sent every frame. Nevertheless, vertex motion and possibly surface texture may be updated every frame, generating an increased amount of data for coding. Furthermore, mesh tracking may suffer when the mesh topology changes, and schemes to “reset” the tracking by introducing keyframes are also commonly applied [4].

[image:]
Figure 2: The Fusion4D [3] introduces keyframes to deal with topology changes.
To efficiently encode tracked meshes, we define a new patch type that indicates patches that are tracked, or “matched” to patches in previous frames. TMC2 already has a similar functionality for the 2D patches (INTER_PATCH). Building on top of the existing INTER_PATCH and the newly proposed MESH_PATCH from [5], we present a patch that can indicate matches in atlas space, as well as patches with preserved connectivity.
In the case of tracked patches, the connectivity doesn’t change from one frame to another, but the position of vertices may change due to global motion and/or surface motion. The global motion is modeled by the 3D bounding box position and rotation (newly introduced syntax elements using quaternions), while the surface motion can either be explicitly sent in the patch information as delta positions, or derived from the video data, in case the reference patch is using the vertex video data (V3C_VVD [5]).
Tracked patch data
Tracked patch data syntax
	tracked_mesh_patch_data_unit(tileID, patchIdx) {
	Descriptor

		if(NumRefIdxActive > 1){
	

			tmpdu_ref_index[tileID][patchIdx]
	ue(v)

			RefIdx = tmpdu_ref_index[tileID][patchIdx]
	

		} else
	

			RefIdx = 0
	

		tmpdu_patch_index[tileID][patchIdx]
	se(v)

		tmpdu_2d_pos_x[tileID][patchIdx]
	se(v)

		tmpdu_2d_pos_y[tileID][patchIdx]
	se(v)

		tmpdu_2d_delta_size_x[tileID][patchIdx]
	se(v)

		tmpdu_2d_delta_size_y[tileID][patchIdx]
	se(v)

		tmpdu_3d_offset_u[tileID][patchIdx]
	se(v)

		tmpdu_3d_offset_v[tileID][patchIdx]
	se(v)

		tmpdu_3d_offset_d[tileID][patchIdx]
	se(v)

		if(asps_normal_axis_max_delta_value_enabled_flag)
	

			ipdu_3d_range_d[tileID][patchIdx]
	se(v)

		tmpdu_rotation_present_flag[tileID][patchIdx]
	u(1)

		if(tmpdu_rotation_present_flag[tileID][patchIdx]) {
	

			tmpdu_3d_rotation_qx[tileID] [patchIdx]
	i(16)

			tmpdu_3d_rotation_qy[tileID] [patchIdx]
	i(16)

			tmpdu_3d_rotation_qz[tileID] [patchIdx]
	i(16)

		}
	

		tmpdu_connectivity_changed_flag[tileID][patchIdx]
	u(1)

		if(!tmpdu_connectivity_changed_fla[tileID][patchIdx]g) {
	

			if(!asps_vertices_in_vertex_video_data){
	

				tmpdu_vertices_change_position_flag[tileID][patchIdx]
	u(1)

				if(tmpdu_vertices_change_position_flag[tileID][patchIdx]){
	

					for(i = 0; i < VertexCount[tileId][RefIdx] ; i++) {
	

						tmpdu_vertex_delta_pos_x[tileID] [patchIdx][i]
	se(v)

						tmpdu_vertex_delta_pos_y[tileID] [patchIdx][i]
	se(v)

					}
	

				}
	

			}
	

		} else {
	

		if(asps_mesh_binary_coding_enabled_flag)
	

			tmpdu_binary_object_present_flag[tileID][patchIdx]
	u(1)

		if(tmpdu_binary_object_present_flag) {
	

			tmpdu_mesh_binary_object_size_bytes[tileID][patchIdx]
	ue(v)

			for(i = 0; i < tmpdu_mesh_payload_size_bytes[tileID][patchIdx]; i++)
	

				tmpdu_mesh_binary_object[tileID][patchIdx][i]
	b(8)

		} else {
	

			tmpdu_vertex_count_minus3[tileID][patchIdx]
	ue(v)

			tmpdu_face_count[tileID][patchIdx]
	ue(v)

			for(i = 0; i < tmpdu_faces_count [tileID][patchIdx]; i++) {
	

				tmpdu_face_vertex[tileID][patchIdx][i][0]
	u(v)

				tmpdu_face_vertex[tileID][patchIdx][i][1]
	u(v)

				tmpdu_face_vertex[tileID][patchIdx][i][2]
	u(v)

				if(asps_mesh_quad_face_flag) {
	

					tmpdu_face_vertex[tileID][patchIdx][i][3]
	u(v)

			}
	

			if(!asps_mesh_vertices_in_vertex_video_data) {
	

				for(i = 0; i < tmpdu_vertex_count_minus3[tileID][patchIdx]+3 ; i++) {
	

					tmpdu_vertex_pos_x[tileID][patchIdx][i]
	u(v)

					tmpdu_vertex_pos_y[tileID][patchIdx][i]
	u(v)

				}
	

	 		 }
	

		}
	

	}
	

Tracked patch data semantics
[bookmark: _Hlk52957519]tmpdu_rotation_present_flag[t][p] equal to 1 indicates that rotation parameters for the patch with index p and tile with tile ID t are present. tmpdu_rotation_present_flag[t][p] equal to 0 indicates that rotation parameters for the patch patch with index p and tile with tile ID t are not present. When tmpdu_rotation_present_flag[t][p] is not present, it shall be inferred to be equal to 0.
tmpdu_3d_rotation_qx[t][p] specifies the x component, qX, for the geometry rotation of the patch with index p and tile with tile ID t using the quaternion representation. The value of tmpdu_3d_rotation_qx[t][p] shall be in the range of −214 to 214 − 1, inclusive. When tmpdu_3d_rotation_qx[t][p] is not present, its value shall be inferred to be equal to 0. The value of qX is computed as follows:
 qX = tmpdu_3d_rotation_qx 214
tmpdu_3d_rotation_qy[t][p] specifies the y component, qY, for the geometry rotation of the patch with index p and tile with tile ID t using the quaternion representation. The value of tmpdu_3d_rotation_qy[t][p] shall be in the range of −214 to 214 − 1, inclusive. When tmpdu_3d_rotation_qy[t][p] is not present, its value shall be inferred to be equal to 0. The value of qY is computed as follows:
 qY = tmpdu_3d_rotation_qy 214
tmpdu_3d_rotation_qz[t][p] specifies the z component, qZ, for the geometry rotation of the patch with index p and tile with tile ID t using the quaternion representation. The value of tmpdu_3d_rotation_qz[t][p] shall be in the range of −214 to 214 − 1, inclusive. When tmpdu_3d_rotation_qz[t][p] is not present, its value shall be inferred to be equal to 0. The value of qZ is computed as follows:
 qZ = tmpdu_3d_rotation_qz 214
The fourth component, qW, for the geometry rotation of the patch with index p and tile with tile ID t using the quaternion representation is calculated as follows:
 qW = Sqrt(1 – (qX2 + qY2 + qZ2))
A unit quaternion can be represented as a rotation matrix R as follow:

tmpdu_vertices_changed_position_flag[t][p] equal to 1 indicates the vertices displacement for the patch with index p and tile with tile ID t are present. tmpdu_vertices_changed_position_flag[t][p] equal to 0 indicates that the vertices displacement for the patch with index p and tile with tile ID t are not present. When tmpdu_vertices_changed_position_flag[t][p] is not present, it shall be inferred to be equal to 0.
[bookmark: _Hlk52957670]tmpdu_vertex_delta_pos_x[t][p][i] specifies the difference of the x-coordinate values of the i-th vertex of patch with index p and tile with tile ID t and the matched patch indicated by tmpdu_ref_index[t][p]. The value of tmpdu_vertex_pos_x[t][p][i] shall be in the range of 0 to 2afps_num_bits_vertex_delta_x - 1, inclusive.
tmpdu_vertex_delta_pos_y[t][p][i] specifies the difference of the y-coordinate values of the i-th vertex of patch with index p and tile with tile ID t and the matched patch indicated by tmpdu_ref_index[t][p]. The value of tmpdu_vertex_pos_y[t][p][i] shall be in the range of 0 to 2afps_num_bits_vertex_delta_y - 1, inclusive.

Combining tracked and untracked mesh patches
To avoid tracking issues, state-of-the-art tracking algorithms (see “Spatiotemporal Atlas Parameterization for Evolving Meshes” by Prada et al [6]) segment the mesh into tracked parts and untracked parts. Tracked parts are consistent in time and can be represented by the proposed tracked_mesh_patch_data_unit(), while untracked parts are new each frame, and can be represented by mesh_patch_data_unit(). Notice that since our notation allows to also mix point clouds into the geometry, surface representation can be improved as well (for example, retaining original mesh and inserting point clouds on top of the mesh to hide the defects)

[image:]
Figure 3: Possible mixed mesh representation using proposed notation

Conclusion
[bookmark: _GoBack]In this contribution, we have shown that tracked meshes are an important dataset that should also be consider for the MPEG mesh coding. The proposed tracked patch data unit follows the philosophy of V3C and allows for the combination of several different data types: tracked meshes, untracked meshes, and even point clouds. We suggest to the group to consider tracked meshes as a future use case for V3C mesh compression, and to further investigate the proposed tracked patch data unit.
References
1. A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. Calabrese, H. Hoppe, A. Kirk and S. Sullivan, "High-quality streamable free-viewpoint video," in ACM Transaction on Graphics (SIGGRAPH), 2015.
1. Guo, Kaiwen, et al. "The relightables: Volumetric performance capture of humans with realistic relighting." ACM Transactions on Graphics (TOG) 38.6 (2019): 1-19.
1. Habermann, Marc, et al. "Deepcap: Monocular human performance capture using weak supervision." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.
1. Dou, Mingsong, et al. "Fusion4d: Real-time performance capture of challenging scenes." ACM Transactions on Graphics (TOG) 35.4 (2016): 1-13.
1. m55368, “[V-PCC][EE2.6-related] Mesh Patch Data” ISO/IEC JTC1/SC29/WG11, online, October 2020.
1. Fabian Prada, Misha Kazhdan, Ming Chuang, Alvaro Collet, ´ and Hugues Hoppe. Spatiotemporal atlas parameterization for evolving meshes. ACM Trans. on Graphics (TOG), 2017.

image1.png
.
Rotation @ Root Relative L "
Joint Angles 8 Landmarks Global Landmarks P
n F <
=y
- R Joint Detections P
4
Segmented Root Relative
Input Image I, Landmarks Global Landmarks M
0] nd -
Ji == 3
Rotation A =
Translation T <
Testi Root Relative = 7
esting Vertices 9 ‘oTegroun
Global Vertices V Miss

Training

image2.png
INPUT

RGB Depth Segmentation

I.It d

PROCESSING FOR CURRENT FRAME ‘ I

Non-rigid alignment

!

Correspondences ED Graph _ Alignment Error

ouUTPUT

Data Volume l Key Volume
Resampling
® Volumetric
® Fusion&
Blending
|
<

The Fusion4D pipeline.

o
@ £
=2
. . S
&
a
2
Q E
8
E
. -
2
o
3
2
i &
Current Last Key Frame Time line

image3.png

