<m55372> Tracked Patch Data

Danillo Graziosi, Alexandre Zaghetto, and Ali Tabatabai

<Problem statement>

* Mesh tracking is part of several volumetric capture pipeline.
* Provide higher compression, since the mesh connectivity does not need to be sent

every frame.
* Nevertheless, vertex motion and possibly surface texture may be updated every frame, generating an
increased amount of data for coding.
« Furthermore, mesh tracking may suffer with topology changes, and schemes to “reset” the tracking by
introducing keyframes are commonly used.

Mesh =» Tracked Mesh + UV Atlas

| Preprocessed
{ P
106 cameras ; images

Meshing + Temporal Mesh Compression +
Texturing Processing Encoding

The Refightables Pipeline

<PROPOSAL>

* Tracked Mesh Patch Data Unit

 We propose to define a new patch type that indicates patches that are tracked, or

“matched” to patches in previous frames.
« TMC2 already has INTER_PATCH, but they only indicate match of 2D atlas parameters. The
proposed patch extends the functionality of INTER patches to indicate match of
connectivity parameters as well.

* In the case of tracked patches, the connectivity doesn’t change from one frame to
another, but the position of vertices may change due to global motion or surface
motion.

* The global motion is modeled by the 3D bounding box position (offset U,V,D) and rotation
(newly introduced syntax elements using quaternions)

* The surface motion can either be explicitly sentin the patch information as delta
positions, or derived from the video data, in case the reference patch is using the vertex
video data (V3C_VVD, see contribution m55368 [4]).

TRACKED PATCH DATA UNIT SYNTAX

tracked_mesh_patch_data_unit(tileID, patchldx) { Descriptor

if(NumRefldxActive>1){

tmpdu_ref index]tileID]| patchldx] ue(v)

Refldx = tmpdu_ref_index]| tileID][patchldx] y
telse i if(asps_mesh_binary_coding enabled_flag)

Refldx=0 i tmpdu_binary_object_present_flag] tileID][patchldx] u(1)
tmpdu_patch_index[tileID][patchldx] se(v) i if(tmpdu_binary_object_present_flag[tileID][patchldx]) {
tmpdu_2d_pos_x[tilelD][patchldx] se(v) i tmpdu_mesh_binary_object_size_bytes|tilelD][patchldx] ue(v)
tmpdu_2d_pos_y[tilelD][patchldx] se(v) i for(i= 0; i< tmpdu_mesh_payload_size_bytes] tileID][patchldx];i++)
tmpdu_2d_delta_size x[tileID][patchldx] se(v) i tmpdu_mesh_binary_object] tileID][patchldx][i] b(8)
tmpdu_2d_delta_size y[tileID][patchldx] se(v) i }else{
tmpdu_3d_offset_u[tileID]| patchldx] se(v) i tmpdu_vertex count_minus3|tilelD][patchldx] ue(v)__|
tmpdu_3d offset v|tileID][patchldx] se(v) i tmpdu_face_count| tilelD][patchldx] ue(v)
tmpdu_3d offset d[tileID]| patchldx] se(v) i for(i= 0; i< tmpdu_faces_count[tileID][patchldx];i++){
if(asps_normal_axis_max_delta_value_enabled_flag) i tmpdu_face_vertex] tileID][patchldx][i][0] u(v)__

ipdu_3d_range_d[tilelD][patchldx se(v i tmpdu_face_vertex] tileID][patchldx][i][1] u(v)__

ﬂ i tmpdu_face_vertex] tileID |[patchldx][i][2] u(v)
i if(asps_mesh_quad_face_flag) {

tmpdu_face_vertex]| tilelD][patchldx][i][3] u(v)

i }
if(lasps_mesh vertices_in_vertex_video_data) {
for(i=0; i< tmpdu_vertex_count_minus3[tileID][patchldx] +3;i++){

u(1) I tmpdu_vertex_pos_x| tileID][patchldx][i] u(v)__|

tmpdu_vertex pos_y[tileID][patchldx][i] u(v)

TRACK PATCH DATA UNIT SEMANTICS

tmpdu_rotation_present flag[t][p] equal to 1 indicates that rotation parameters for the patch with index p and tile with tile ID t are present. tmpdu_rotation present flag[t][p] equal to O indicates that rotation
parameters for the patch patch with indexp and tile with tile ID tare not present. When tmpdu_rotation_present_flag[t][p] is not present, it shall be inferred to be equal to O.

tmpdu_3d rotation_gx[t][p] specifies the x component, gX, for the geometry rotation of the patch with index p and tile with tile 1D t using the quaternion representation. The value of tmpdu_3d_rotation_gx{ t][p]
shallbe in the range of —2%4to 214 — 1, inclusive. Whentmpdu_3d_rotation _gx{t][p] is not present, its value shall be inferred to be equal to 0. The value of gXis computed as follows:

gX =tmpdu_3d_rotation_gx+2*
tmpdu_3d_rotation_qy[t][p] specifies the y component, qY, for the geometry rotation of the patch with index p and tile with tile ID t using the quaternion representation. The value of tmpdu_3d_rotation_qy[t][p]
shallbe in the range of —24to0 214 — 1, inclusive. Whentmpdu_3d_rotation_qy[t][p] is not present, its value shall be inferred to be equal to 0. The value ofqY is computed as follows:
qY =tmpdu_3d_rotation_qgy + 2
tmpdu_3d_rotation_gz[t][p] specifies the z component, gZ, for the geometry rotation of the patch with index p and tile with tile ID t using the quaternion representation. The value of tmpdu_3d rotation qz[t][p]
shallbe in the range of —24to 214 — 1, inclusive. Whentmpdu_3d_rotation_qz[t][p]is not present, its value shall be inferred to be equal to 0. The value of qZ is computed as follows:
gZ=tmpdu_3d_rotation_qz= 2
The fourth component, qW, for the geometry rotation of the patch with indexp and tile with tile 1D t using the quaternion representation is calculated as follows:
qW =Sqrt(1- (gX*+qY?+qZ?))
A unit quaternioncan be represented as a rotation matrix R as follow:
1-2%(qY*+qZ?%) 2x(qXxqY—qZ*qW) 2x(qX*qZ +qY *qW)
RotationMatrix = 2x(qX*qY +qZxqW) 1-2x(qX*+qZ?) 2x(qY *qZ—qX *qW)

2+ (qX*qZ—qY *qW) 2% (qY * qZ+ qX * qW) 1-2%(gX?*+qY?)
0 0 0 1

tmpdu_\ertices_changed position_flag[t][p] equal to 1 indicates the vertices displacement for the patch with index p and tile with tile ID t are present. tmpdu_vertices_changed_position flag[t][p] equal to 0
indicates that the vertices displacement for the patch with indexp and tile with tile ID tare not present. Whentmpdu_vertices_changed_position_flag[t][p] is not present, it shall be inferred to be equal to 0.

S O O

tmpdu_vertex_delta pos x[t][p][i] specifies the difference of the x-coordinate values of the i-th vertex of patch with index p and tile with tile ID t and the matched patch indicated by tmpdu_ref index{t][p]. The
value oftmpdu_vertex pos x[t][p][i] shallbe in the range of 0 to 2afps_num.bits vertex_delta x _ 1 "inclusive.

tmpdu_vertex_delta pos y[t][p][i] specifies the difference of the y-coordinate values of the i-th vertex of patch with index p and tile with tile ID t and the matched patch indicated by tmpdu_ref index{t][p]. The
value oftmpdu_vertex pos y[t][p][i] shallbe inthe range of O to 2afps_num_bits vertex deltay _ 1 “inclusive.

Combining Untracked and Tracked Mesh information

“Spatiotemporal Atlas Parameterization for Evolving Meshes” by Prada et a/)
segment the mesh into tracked parts and untracked ﬁarts.
+ Tracked parts are consistent in time and can be represented by the proposed

« Untracked parts are new each frame and can be represented by mesh_patch_data_unit().

| ViCsampleStream | | NALSample Stream | Aua Tile Layer |
VI Sempte Strvam Pracicen WAL U S Practiies 1_TILE
VI e rveams Vibe A Ut LINTRA
vac_vps NAL_ASI’S porch dama wnit[)
¥3c_parssseser_set|) s sequenie paraneoer_set b) :
VI g vsan Se AL Lt R MESH INTRA
V3C_AD NAL_AAPS
Lo seb Mistroars() G | sdapidicn pararsecer set rbag!)
VICSerngie Drwem Sizs
V3C_OVD ? NAL ,;\FN
videa_ssb birareans|) w_parasmcer_set sty)
VICSanage Seroa Sin
V3C_GVD ? NAIJ’R[FIX_ESEI
videa b, Bterears|)
VICSange Srwam Size
V3C_AVD ACL NAL unit type
b_tdrsreans|) ? Hle growy Myerrop() 4
VI g By e
V3Cc_vvD ACL NAL unit type
video_seb, btstrears]) %1‘4 o group Lger () 4

? NAL_SUFFIX.I'SEI

B 5o heaser() [atia tile_group header()
- V3e_wnit_paykead(] [II]E atlas_tile_group_data_unt()

sl _unit_header() - patch_information_data)

<EXPERIMENTAL RESULTS>

- Under development = let's get tracked content for our dataset!!!

<Conclusion>

 We believe that tracked meshes are an important dataset that should
also be consider for the MPEG mesh coding

* The proposed tracked patch data unit follows the philosophy of V3C
and allows for the combination of several different data types: tracked
meshes, untracked meshes, and even point clouds.

* We suggest to the group to consider tracked meshes as a future use
case for V3C mesh compression, and further investigate the proposed
tracked patch data unit.

