[bookmark: _Hlk52815667]INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 7
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC 1/SC 29/WG 7 m 55374
Online – October 2020

Title: [VPCC] [EE2.6-related] Mesh Geometry Smoothing Filter
Author: Danillo Graziosi, Alexandre Zaghetto, Ali Tabatabai

Abstract
In this contribution we present a geometry smoothing filter for meshes, augmenting the currently available geometry smoothing filter set. In patch projection, commonly a mesh is segmented, and when reconstructed, parts of the mesh may not match. We introduce a zippering technique for projected meshes and show improvement in visual quality.

Introduction
In our mesh coding approach, if lossy compression of vertex data is used, the reconstructed mesh may have gaps between patches due to vertex position quantization and coding artifacts, creating a mismatch between the patch borders. This is visible in Figure 1, where we can see gaps in the man’s face and arms. However, if we assume that the mesh is a manifold, the gaps should not exist. This is a common problem in mesh generation using range images, and a typical solution is a zippering algorithm [1], merging triangle vertices that belong to the border of a patch. We apply here a similar concept, with the differentiation that, since our coding scheme preserves two coordinates during encoding (they are losslessly represented by the coordinates u and v), we use that restriction to constraint the search for the matched neighbor. Furthermore, since the filter could be seen as a smoothing of geometry information, we use the currently available SEI scheme to send the filter parameters.

[image: ]
Figure 1: Gaps artifacts due to lossy compression of vertices positions
Mesh Geometry Filtering: Mesh Zippering
Syntax
	geometry_smoothing( payloadSize ) {
	Descriptor

		gs_persistence_flag
	u(1)

		gs_reset_flag
	u(1)

		gs_instances_updated
	u(8)

		for( i = 0; i < gs_instances_updated; i++ ) {
	

			gs_instance_index[ i ]
	u(8)

			k = gs_instance_index[ i ]
	

			gs_instance_cancel_flag[ k ]
	u(1)

			if( gs_instance_cancel_flag[ k ] != 1 ) {
	

				gs_method_type[ k ]
	ue(v)

				if( gs_method_type[ k ] == 1 ) {
	

					gs_filter_eom_points_flag[ k ]
	u(1)

					gs_grid_size_minus2[ k ]
	u(5)

					gs_threshold[ k ]
	u(8)

				}
	

				else if( gs_method_type[ k ] == 2 ) {
	

					gs_zippering_border_distance_minus1[ k ]
	u(8)

					gs_zippering_max_match_distance[ k ]
	u(8)

				}
	

			}
	

		}
	

	}
	



Semantics
gs_zippering_border_distance_minus1[ k ] plus 1 specifies the value of the variable zipperingBorderDistance[ k ] used for identifying border vertices in the process of the current mesh frame for geometry smoothing instance with index k when the zippering filtering process is used. The value of gs_zippering_border_distance_minus1[ k ] shall be in the range of 0 to 255, inclusive.
gs_zippering_max_match_distance[ k ] specifies the value of the variable zipperingMaxMatchDistance[ k ] used for processing the current mesh frame for geometry smoothing instance with index k when the zippering filtering process is used. The value of gs_zippering_max_match_distance[ k ] shall be in the range of 0 to 255, inclusive.
Table H.7 – Definition of gs_method_type[ k ]
	Value
	Interpretation

	0
	No geometry smoothing

	1
	Grid based geometry smoothing

	2
	Zippering filtering

	3-255
	Reserved



Zippering Algorithm
The zippering algorithm is divided into 3 steps: border detection, a reference location search and the final vertex merge operation.
Border detection
We use the occupancy map to identify vertices that belong to the border of the patch. Given a user-defined search window, we look for zero-valued occupancy positions around a vertex. Since the occupancy map precision also affects the accuracy of the detection, we recommend setting the distance to double the occupancy map precision. Figure 2 shows an example of border (in red) and non-border (in green) pixels.

[image: ]
Figure 2: Border (red) and non-border (green) vertices
One limitation of this approach is that it can misclassify the vertices, in case the search area is too large (and the search area of internal vertices overlap the zero-valued occupancy map, as shown in Figure 3(a)), or if the search area is not large enough (as shown in Figure 3(b)). However, the patch mesh topology can provide the classification based on how many triangles an edge belongs to. Edges at patch border only belong to a single triangle, while edges inside the patch always below to two triangles.

	[image: ]
(a) Wrong border classification due to large search area
	[image: ]
(b) Wrong non-border classification due to small search area


Figure 3: Issues with vertex classification

Reference location search
Reference location is the location in 3D space where border points should meet, that is, where border points were located before compression. Since two coordinates are coded lossless by using projection, the location of the coded border point has shifted from the reference location along the normal direction. We perform a search along that direction, as shown in Figure 4, and look for other border points that should have the same reference point. The location of the reference point for a border point is defined as follows:
· Search for a reference position by modifying the border vertex coordinate value in normal direction until the new reference point meets at least one potential candidate, that is, another border point, or reach the maximum distance (zipperingMaxMatchDistance).
· In case of multiple matched candidates, set the reference to the value that generated the greatest number of matches.

[image: ]
Figure 4: The reference position search is done along the normal direction of the border pixel

Vertex Merge
With the reference point location from previous step, we will adjust the position of all border vertices that belong to neighboring patches and are closer to the reference location.
We perform a search for border points in neighboring patches. If a border vertex is found, we modify the border vertex value to the reference point and remove that border vertex from the list. Otherwise, since we may have misclassified the border pixels, we perform the search for matches in the list of non-border vertices. In that case, if a match is found, we then modify the non-border vertex value to the reference point.
Simulations Results
We show here two results, one for basketball sequence coded at rate R3, and another one for longdress sequence coded at rate R5. 

	[image: ]
(a) Without zippering
	[image: ]
(b) With zippering

	[image: A person standing posing for the camera

Description automatically generated]
(c) Without zippering
	[image: A person standing posing for the camera

Description automatically generated]
(d) With zippering


Figure 5: Visual quality evaluation of reconstructed meshes
Notice that for basketball, since a lower rate was used, the resolution of occupancy map is smaller, which affects the detection of border elements. The algorithm can improve reconstruction in some areas, like the man’s arms and body, but still cannot close all gaps, as we can see from artifacts on his face. In the case of longdress, rate point R5 was used, so the occupancy map resolution is larger. We notice that the zippering algorithm successfully removed the gaps on the lady’s face and body, and significantly improved reconstruction.
Conclusion
[bookmark: _GoBack]In this contribution, we have implemented a mesh geometry smoothing filter method based on zippering algorithm. The method is sent using an SEI message and can improve the reconstructed quality of the mesh. Additionally, the method could remove duplicate vertices, and represent merged vertices as a single vertex, reducing the number of vertices of the reconstructed mesh. We suggest the group to consider the current proposed filter and keep investigating mesh geometry smoothing methods. 
References
1. Turk, Greg, and Marc Levoy. "Zippered polygon meshes from range images." Proceedings of the 21st annual conference on Computer graphics and interactive techniques. 1994.
image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

