INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 7
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC 1/SC 29/WG 7 m 56116
Online – January 2021

Title: Updates to Reference SW for Conducting V-PCC Conformance Test
Author: Danillo B Graziosi, Ali Tabatabai, Alexandre Zaghetto, Julien Riccard

Abstract
In this contribution we describe several additional methods that have been merged into reference software (TMC2 release 12), in order to facilitate the conductance of V-PCC conformance test. “PCCLogger” and “PCCCodec” classes contain these new methods, that are necessary to perform conformance test for both static and dynamic atlas patch and point cloud frame parameters. We also suggest changes to the TMC2 software to address certain detected inconsistencies, as the result of running some preliminary conformance tests.

 Introduction
[bookmark: _GoBack]“PCCLogger” class has been introduced in TMC2 release 12. This is a very useful class for debugging codec and bitstream parameters. It contains several methods together with associated macros, for their activation. They produce trace and log files for each patch, codec and bitstream related parameters. In support of conformance tests, and with the aim to produce log files according to the V-PCC conformance test specification [1], we have added a new macro,“CONFORMANCE_TRACE”, that can be used to activate these three new methods associated with PCCLogger class . In the following section, we describe these methods and provide examples of their generated output log files.

Conformance Test Methods
Based on [1] we have added the following methods to “PCCLogger” class: traceAtlas(…), traceTile(…), and traceFrame(…). These “PCCLogger” class methods can be activated by defining the following three macros: “TRACE_ATLAS”, “TRACE_TILE”, and “TRACE_FRAME”. A brief description of each of these methods is provided below.

traceTile(…):,
Is used to provide a “textual” description with one row for each output tile. Each row contains the following information, in (key, value) format:
1. AtlasFrameOrderCntVal
2. TileID
3. TileType
4. TileOffsetX
5. TileOffsetY
6. TileWidth
7. TileHeight
8. Tile MD5
9. Tile B2PMD5
An example of the output file for an atlas frame with 3 tiles generated by the encoder is shown, below:

Atlas Frame Index = 0,
TileID = 0, AtlasFrameOrderCntVal = 0, TileType = 1, TileOffsetX = 0, TileOffsetY = 0, TileWidth = 1152, TileHeight = 896, Tile MD5 = 74ebea893202f0426f4e2e2891219c9f, Tile B2P MD5 = e97b4fd29091c796e7589ee4c593b9,
TileID = 1, AtlasFrameOrderCntVal = 0, TileType = 1, TileOffsetX = 1152, TileOffsetY = 0, TileWidth = 128, TileHeight = 448, Tile MD5 = 4115ca47cf9e9e1fd843ee4390a55126, Tile B2P MD5 = 9aa65698460940865dcfe9e3a68cdc56,
TileID = 2, AtlasFrameOrderCntVal = 0, TileType = 1, TileOffsetX = 0, TileOffsetY = 896, TileWidth = 1152, TileHeight = 640, Tile MD5 = 36d524002b7df3ae33c9fc72555cfe2a, Tile B2P MD5 = e26aad70f414073e9883ae534685f775,

traceAtlas(…):
Is used to provide a “textual” description with one row for each output atlas frame. Each row contains the following information, in (key, value) format:
1. AtlasFrameOrderCntVal
2. AtlasFrameWidthMax
3. AtlasFameHeightMax
4. AtlasID
5. ASPSFrameSize
6. VPSMapCount
7. AttributeCount
8. AttributeDimension
9. NumTilesInAtlasFrame
10. AtlasTotalNumProjPatches
11. AtlasTotalNumRawPatches
12. AtlasTotalNumEOMPatches
13. Atlas MD5
14. Arlas B2P MD5
An example of the output file for an atlas frame generated on the decoder side is shown, below:
Atlas Frame Index = 0,
AtlasFrameOrderCntVal = -842150451, AtlasFrameWidthMax = 1280, AtlasFrameHeightMax = 1536, AtlasID = 0, ASPSFrameSize = 1966080, VPSMapCount = 2, AttributeCount = 1, AttributeDimension = 3, NumTilesAtlasFrame = 3, AtlasTotalNumProjPatches = 0, AtlasTotalNumRawPatches = 0, AtlasTotalNumEOMPatches = 0, Atlas MD5 = 9d595f921b54fa85b7de63b93f667d33, Atlas B2P MD5 = 1b2a35d8ea9ebaaaca7f658342efa80e,

traceFrame(…):
Is used to provide a “textual” description with one row for each output point cloud frame. Each row contains the following information, in (key, value) format:
1. PointCloudFrameOrderCntVal
2. NumProjPoints
3. NumRAWPoints
4. NumEOMPoints
5. Frame MD5
An example of the output file for an atlas frame generated on the encoder side is shown, below:
Atlas Frame Index = 0, PointCloudFrameOrderCntVal = 0, NumProjPoints = 0, NumRAWPoints = 0, NumEOMPoints = 0t, Frame MD5 = xxxxxxxx,

Checking Conformance
In addition to the three methods describe above, we have also added a new method to the TMC2 “PCCCodec” class, i.e. checkConformance(…), in order to examine whether atlas, tile, and point cloud frame parameters, as described above, are a) identical on the encoder and decoder side, and also, b) satisfy the general tier and level limits and profile specific level limits for the V3C dynamic profiles specified in Annex A of V3C and V-PCC FDIS [2] , subclauses A.6.1 and A.6.2 .
This method together with an additional method associated with PCCLogger class, trace_conformance(…), generates an output textual file an example of which is shown, below:
Key: AtlasFrameIndex Val: 0, 0 (OK)
 Key: ASPSFrameSize Val: 1966080, 1966080 (OK)
 Key: AtlasB2PMD5 Val: 1b2a35d8ea9ebaaaca7f658342efa80e, 1b2a35d8ea9ebaaaca7f658342efa80e (OK)
 Key: AtlasFrameHeightMax Val: 1536, 1536 (OK)
 Key: AtlasFrameIndex Val: 0, 0 (OK)
 Key: AtlasFrameOrderCntVal Val: -842150451, 0 (DIFF)
 Key: AtlasFrameWidthMax Val: 1280, 1280 (OK)
 Key: AtlasID Val: 0, 0 (OK)
 Key: AtlasMD5 Val: 9d595f921b54fa85b7de63b93f667d33, 35f4dce1a03495f4b4cbb2998a56c6e0 (DIFF)
 Key: AtlasTotalNumEOMPatches Val: 0, 0 (OK)
 Key: AtlasTotalNumProjPatches Val: 0, 54 (DIFF)
 Key: AtlasTotalNumRawPatches Val: 0, 0 (OK)
 Key: AttributeCount Val: 1, 1 (OK)
 Key: AttributeDimension Val: 3, 3 (OK)
 Key: NumTilesAtlasFrame Val: 3, 3 (OK)
 Key: VPSMapCount Val: 2, 2 (OK)

Further TMC2 Improvements
While performing some preliminary conformance tests we observed several issues with the current implementation of TMC2, release 12.

1. The mismatch between encoder and decoder on the maximum depth value:
SEI hash message detected a problem with maximum depth value This value is being sent by the encoder; it is not however used in the reconstruction process and it thus does not affect the overall decoding process. In this case the encoder writes a value 4 for the max depth. The decoder, by reading 2 bits, decodes the value 0 instead. Other mismatches include the specification of initial atlas frame order count value and number of projected patches between encoder and decoder side. These mismatches are highlighted in yellow and magenta, above.

2. 3D motion compensation:
The default value for input parameter,“apply3dMotionCompensation” is set to , true, causes a crash.

Conclusion
The updates described above have been merged into TMC2 release 12 and uploaded in the Github repository: 106-check-the-point-a-conformance. We propose to merge these new methods in the next release of TMC2 software.

References
[1] Information technology — Coded Representation of Immersive Media — Part 20: Conformance Testing for Video-based Point Cloud Compression (V-PCC), October 2020
[2] ISO/IEC FDIS 23090-5: Information technology — Coded Representation of Immersive Media — Part 5: Visual Volumetric Video-based Coding (V3C) and Video-based Point Cloud Compression (V-PCC), October 2020.[footnoteRef:1] [1: Under preparation. Stage at time of publication: ISO/IEC DIS 23090-10:2020]

2

