
m56760
EE4.1 mesh metric software

v0.1.9
updates and review

Jean-Eudes Marvie (Interdigital)

Animated
meshes
with animated
textures

Introduction

• The Mesh Metric and Tools software v0.1.9 is avaliable at:
• http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-mmetric/-/tree/0_1_9

• Original purpose is to provide mesh metrics:
• lossless, near-lossless, lossy

• Also provides some tools we used to validate/test the metric1

• Also provides some tools for anchor content preparation1

 The software comes as a command line program
 Each tool is implemented as a “sub-command”,

Those are named “command” in the rest of the presentation.

1. We implemented the tools that we did not find available in MeshLab, CloudCompare, Open3D and other 3D software or for
performance reasons.

http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-mmetric/-/tree/0_1_9

Repository filesystem
http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-mmetric/-/tree/0_1_9

3rparty software are versioned, no external dependencies

Binary compilation outputs

Cmake build tree (generated) contains MSVC solution, xcode project or makefile

Manually edited part of the readme

C++ Source code

Test suites

The build script (runs Cmake generate and build the project)

Generates the README.md from /doc content and command help (for dev & maintainer)

The per version list of changes (can be useful) and contributor list

Cleanup the build tree

The doc you should definitively read (use gitlab view, .md is eye candy) !!

http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-mmetric/-/tree/0_1_9

Compilation

• From root of filesystem build the software with the following
command:
• ./build.sh [release|debug] [noomp] [nojobs]

• release|debug: sets build target (release is default)
• noomp: disables openmp build
• nojobs: disables multi-processor build on Unix (i.e. use -j 1)

• output binary produced in bin folder:
• release mm.exe / mm
• Debug mm_d.exe / mm_d

Builds supported for MSVC2019, Linux GCC/Clang (stdc++11), Apple
Clang (stdc++11)

Testing

• From filesystem root
• Run full suite

./test.sh [ext]

• From test folder (finer control)
• Run full suite

./test-all.sh [ext]

• Run a specific suite
./test-compare-pcc [ext]

• [ext] option stands for extended
• Takes longer but run more tests
• Also run on more complex models

Test input data

Meshlab project to
visualize some models
generated by tests

Test output references

Temporary folder that
contain:

• Some temporary pre-
generated input data

• All the test outputs
(data and logs)

Common test
configurations

Test suites

Using git-bash (windows) or bash (unix/linux)

Content of test folder

Test outputs

Running full suite in
extended mode

** Name of test suite

Name of unit test

Test error: This specific
error will appear only on
windows since test output
set to Linux output value
but OS numerical
instability of PCC metric.

Tests succeed if you do
not see any Error or
Segmentation fault
messages

Command line documentation

• The software provides a set of commands (tools)

• Running mm.exe / mm with no params will display the software
version and the list of commands:

To get help for a specific command
replace “command” by the name
from the command list

Principles

A model can be a point cloud or a mesh

• the system can read/write point clouds as obj or ply format.

• the system can read/write meshes as obj or ply format.

Once a file loaded the system detects a mesh by checking if any

topology is available.

• the system can read texture as PNG/JPG images or YUV/RGB
videos

Invoking a single command

• Sample input.obj into output.ply using subdivision mode (sdiv).

• Compare textured inputB.obj mesh against inputA reference mesh
using pcc_error. Will use default sampling method (i.e. face).

The command, the order independent command and mode parameters

Command combination (single call) – 1/2

• Following example uses specific grid sampling method, then compare using
pcc_error and pcqm metrics in a single call.

• The two “sample” calls outputs “in memory” with id “pcA” and “pcB”

• The two point clouds are then used by “compare” commands as input

IMPORTANT: The “ID:” prefix notifies the system that value is not a filename

IMPORTANT: do not forget the “END” at the end of each command

Order of execution

Command combination (single call) – 2/2

• Same as previous but dumping intermediate sampling results into files
pcA.ply and pcB.ply (slower than pervious mechanism).

• Compare commands still use the versions in memory (no reload).
• Filename is used as a key to find the model in the internal model store.

• Several commands can be cascaded using this mechanism, for instance
doing quantization then sampling then compare.
• Note however that memory won't be released between sub command calls so

cascading many commands may be very consuming in terms of memory.

Sequence processing (1/2)

• Following sample demonstrates how to execute commands on a
numerated sequence of objects ranging from 00150 to 00165 included.

• The "%3d" part of the file names will be replaced by the frame number
ranging from firstFrame to lastFrame, coded on 3 digits.

IMPORTANT: use %03d instead of %3d if range over variable number of
digits (e.g. [075, 125])

IMPORTANT: The model store is purged at each new frame

Sequence must be first call

Sequence processing (2/2)

• The replacement mechanism can also be used on final or
intermediate output file names as shown in the two following
examples.

--outputVar mechanism (1/2)

• Some commands provides the option
• –outputVar filename

• When using this option some values
computed over the sequence are
output in the file “filename”

• This file can be directly reloaded by a
bash script using the source
mechanism.
• source filename

• The bash variables can then be
reinjected into subsequent calls of mm
or other software parameters.

“analyse” command outputVar file

--outputVar mechanism (1/2)
• In the following example, the extremums (Position bounding box, normal bounding box and uv

bounding box) are computed for the entire sequence by the “analyse” command (Call 1).

• The values are then used as the quantization range for each frame by the quantize sequence (Call 2).

Produce variables

Reload variables

Consume variables

Call 1

Call 2

--outputCsv mechanism (1/2)

• Some commands provides the option
• –outputCsv filename

• This option is useful in sequence mode to dump per-frame statistics
• Current version supports outputCsv for “analyse” and “sample” commands
• Will be available for “compare” commands in next version (Work in progress).

• The file is not purged at each call of mm
• One must erase it before a call to get info only for this call
• This has the advantage that one can cumulate stats over series of call.

Note: if you change the sampling command mode between calls,
headers will be incoherent since each mode dumps a specific set of
statistics for the given mode.

--outputCsv mechanism (2/2)

• Example outputCsv of a single sequence call of “analyse”

• Example outputCsv of multiple calls to “sample –mode ediv”

• Note: those files are available in the /test/tmp folder of the repository after
a run of the tests.

Commands
Used to validate/test the different metrics and generate the anchor contents

- quantize/dequantize

- degrade

- normals

Quantize/dequantize commands Used for anchor content generation

example
quantize qp8

Degrade command

--nthFace=25 --nthFace=150 --nthFace=1000

Used for metric validation

Degrade - use in metric assessment

Normals command
Accurate per-vertex normal vectors are mandatory for lighting,
especially useful in AR/VR scenarios

Seams

No seams

Normalized=off
NoSeams=off
0.001 sec

Normalized=on
NoSeams=off
0.001 sec

Normalized=on
NoSeams=on
0.021 sec

MeshLab &
Open3D uses
this version

example
quantize qp8

No lighting Top right lighting
Lambertian material

Commands
Used to evaluate the different metrics

- reindex

- sample

- compare

Reindex command

• All sorting modes (--sort) generates a single index table

• --sort=none
• will just convert separate index tables into one (no sorting)

• --sort=vertices
• Will sort the vertices by x, y, z, u, v, r, g, b values and use single index

• --sort=oriented
• sort the vertices
• Then shift the indices of each triangle so the first index is the smallest (preserving orientation)

• 9/1/24 becomes 1/24/9

• --sort=unoriented
• sort the vertices,
• Then sort the indices of each triangle in crease order (not preserving orientation)

• 9/1/24 becomes 1/9/24

• Warning: Visual impact if lighting or backface culling enabled

We re-order mesh inputs to prevent potential metric
numerical instabilities on identical meshes with
different order

The one used by the metric

Reindex – visual impact

--sort unoriented --sort oriented --sort unoriented --sort oriented

Ligthing=on
Culling=off

Ligthing=on
Culling=on

Recall that back face culling is important for
rendering performance (50% cost)

Sample command
Sampling is used for the mesh metric. Meshes
are reindexed, then sampled, then ingested
into a point cloud metric.
We developed several sampling method to
search for the best one fitting the mesh
metric needs.

New

New

Sampling examples – 2 million points

--mode=ediv --mode=face --mode=grid

Compare command
Eq, pcc and pcqm mode can ingest point clouds or
meshes. For pcqm and pcc: meshes are automatically
sampled using (face 1024). Topo is specific to meshes.

Eq, is for lossless evaluation.
Topo is for near-lossless evaluation
Pcc and PCQM are for near-lossless and lossy evaluation

New

Extended

Compare in sequence
Pcc sequence
log output
summary

Pcqm sequence
log output
summary

--outputVar and –outputCsv
for all modes planed for next
version

See presentation of m56759
for details on usage of
compare.

Questions ?

