INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 7
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC 1/SC 29/WG 7 m 57368
Online – July 2021

Title: [G-PCC][New] Extension of Trisoup to variable node size
Author: Kyohei Unno, Kei Kawamura (KDDI)
Abstract
In this contribution, it is proposed that an extention of Trisoup to variable node size. By the proposed mtehod, a Trisoup node size can be selected for each node in the range of minTrisoupNodeSize to maxTrisoupNodeSize.
Introduction
In the current implementation of Trisoup, Trisoup node size can be defined as only one size for a slice [1]. In other words, the current implementation only supports single-level Trisoup. In terms of coding efficiency, an extension of Trisoup to multi-level could be improved coding efficiency by selecting node sizes according to the structure of an input point cloud.
In [], it is proposed that implementation of adaptive multi-level Trisoup based on G-PCC, and it is reported that the adaptive multi-level Trisoup improves coding efficiency.
Proposed method
Decoding process
In this contribution, it is proposed that an extension of Trisoup to variable node sizes. The proposed decoding process is as follows.

1) When trisoup_enabled_flag is true, multilevel_trisoup_enabled_flag is additionally decoded from GPS as shown in Table 1.
2) When multilevel_trisoup_enabled_flag is true, max_trisoup_node_size_log2 and mix_trisoup_node_size_log2 are decoded from GDUH instead of trisoup_node_size_log2 that is used for single-level Trisoup.
Then, information of unique segments are also decoded from GDUH as shown in Table 2.
3) Occupancy and trisoup_applied_flag are decoded for each node in each depth as shown in Table 3.
a) When the current node size is larger than the max trisoup node size, occupancy maps are decoded by conventional Octree decoding process.
b) Otherwise, when the current node size is equal to or smaller than the max trisoup node size and the current node size is larger than the min trisoup node size, trisoup_applied_flag is firstly decoded for each node.When trisoup_applied_flag is true, the current node is marked as Trisoup node of the current depth, then Octree process is terminated for the current node. Otherwise (trisoup_applied_flag is false), occupancy map is decoded and the current node is splitted by Octree.
c) Otherwise, when the current node size is equal to the min trisoup node size, all remaining nodes are marked as Trisoup node (same as single-level Trisoup).
4) Reconstructed points for each Trisoup nodes are generated as same as single-level Trisoup for each node, then reconstructed points for all depth are merged. Proposed syntax changes are shown in Table 4.

[bookmark: _Ref76031874]Table 1 The proposed syntax changes on Geometry Parameter Set.
	geometry_parameter_set() {
	Descriptor

		gps_geom_parameter_set_id
	ue(v)

	 ...
	

	 trisoup_enabled_flag
	u(1)

	 if (trisoup_enabled_flag) {
	

	[bookmark: _Hlk76031920]	 trisoup_multilevel_enabled_flag
	u(1)

		}
	

		...
	

	}
	

[bookmark: _Ref76403174]Table 2 The proposed syntax changes on Geometry Data Unit Header.
	geometry_data_unit_header() {
	Descriptor

		gsh_geometry_parameter_set_id
	ue(v)

	 ...
	

	 if (trisoup_enabled_flag) {
	

		 if(trisoup_multilevel_enabled_flag) {
	

		 log2_trisoup_max_node_size_minus2
	ue(v)

		 log2_trisoup_min_node_size_minus2
	ue(v)

		 trisoup_depth = log2_trisoup_max_node_size_minus2 - log2_trisoup_min_node_size_minus2 + 1
	

		 }else{
	

		 log2_trisoup_node_size_minus2
	ue(v)

		 trisoup_depth = 1
	

		 }
	

		 trisoup_sampling_value_minus1
	ue(v)

		 for (i = 0; i <= trisoup_depth; i++){
	

		 unique_segments_exist_flag[i]
	u(1)

		 if (unique_segments_exist_flag[i]) {
	

		 num_unique_segments_bits_minus1[i]
	ue(v)

		 num_unique_segments_minus1 segmentBits[i]
	u(v)

		 }
	

		 }
	

		 }else{
	

		 log2_trisoup_node_size_minus2
	ue(v)

		 num_unique_segments_bits_minus1
	

		 segmentBits
	

		 }
	

		}
	

		...
	

	}
	

[bookmark: _Ref76986479]Table 3 The proposed syntax changes on Geometry octree node syntax.
	geometry_node(depth, nodeIdx, sN, tN, vN) {
	Descriptor

		if(geom_node_qp_offset_present_flag) {
	

			geom_node_qp_offset_abs_gt0_flag
	ae(v)

			if(geom_node_qp_offset_abs_gt0_flag) {
	

				geom_node_qp_offset_abs_minus1
	ae(v)

				geom_node_qp_offset_sign_flag
	ae(v)

			}
	

		}
	

		if (depth >= first_trisoup_depth)
	

			trisoup_applied_flag
	ae(v)

				if (trisoup_applied_flag)
	

					return
	

	
	

		if(geometry_planar_enabled_flag)
	

			for(k = 0; k < 3; k++)
	

				if(PlanarEligible[k]) {
	

					is_planar_flag[k]
	ae(v)

					if(is_planar_flag[k])
	

						plane_position[k]
	ae(v)

				}
	

		if(DirectModeFlagPresent)
	

			direct_mode_flag
	ae(v)

		if(direct_mode_flag)
	

			geometry_direct_mode_data()
	

		else {
	

			if(OccupancyIdxMaybePresent)
	

				single_child_flag
	ae(v)

			if(single_child_flag)
	

				for(k = 0; k < 3; k++)
	

					if(! isPlanar[k])
	

						occupancy_idx[k]
	ae(v)

			if(OccupancyMapPresent)
	

				if(bitwise_occupancy_flag)
	

					occupancy_map
	ae(v)

				else
	

					occupancy_byte
	de(v)

			if(LeafNode && duplicate_points_enabled_flag)
	

				for(child = 0; child < NumChildren; child++) {
	

	[Ed: there are two instances of dup_point_cnt_gt0_flag, they are the same flag, but signalled in different places...]
				dup_point_cnt_gt0_flag[child]
	ae(v)

					if(dup_point_cnt_gt0_flag[child])
	

						dup_point_cnt_minus1[child]
	ae(v)

				}
	

		}
	

	}
	

[bookmark: _Ref76986505]Table 4 The proposed syntax changes on Geometry trisoup data syntax.
	geometry_trisoup_data() {
	Descriptor

		if(trisoup_multilevel_enabled_flag)
	

			trisoup_depth = log2_trisoup_max_node_size_minus2 - log2_trisoup_min_node_size_minus2 +1
	

		else
	

			trisoup_depth = 1
	

	
	

		for (lvl = 0; lvl < trisoup_depth; lvl++) {
	

			if (unique_segments_exist_flag[i]) {
	

				for(i = 0; i <= num_unique_segments_minus1; i++)
	

					segment_indicator[lvl][i]
	ae(v)

				for(i = 0; i < NumTrisoupVertices; i++)
	

					vertex_position[lvl][i]
	u(v)

			}
	

		}
	

	}
	

Encoding process
At encoder side, Trisoup node size for each node is determined as follows. Figure 1 shows an example maxTrisoupnodesize corresponds to depth 2 and maxTrisoupnodesize corresponds to depth 4.
1) Points are reconstructed for each depth as same as the single-level Trisoup. In Figure 1, points are reconstructed for depth 2 through 4, respectively.
2) Costs are compaired between a parent node and a child nodes. In this contribution, D1 MSE is used as the cost function according to [2].
Then, a node that has smaller cost is determined as Trisoup node tentatively. The comparing opperations are done recursively from the largest depth to the smallest depth. In Figure 1, firstly costs for depth 4 and depth 3 are compaired, then costs for depth 3 and depth 2 are compaired.
[image:]
[bookmark: _Ref76987406]Figure 1 An example of Trisoup node size determination.

Experimental results
We implemented the proposed method on top of TMC13-v13.0. We tested three settings of node size show in Table 5. Node sizes for anchor is defined by CTC, and node size 2 (for r04) is the minimum node size for Trisoup in principle. In test A, node size can be selected the same size of CTC or CTC + 1 size.
In test B and test C, the proposed variable node size are applied only for higher rate points because the proposed method is efficient for higher rate points. The proposed method can reduce bitrate by using larger node size than that of the ancher, with preserving objective quality by cost function (currently D1 MSE is used). However, node size may be sufficiently large in lower rate points. Therefore, the proposed method may not be efficient for lower rate points.
Table 6, Table 7, and Table 8 are experimental results for test A, B, and C, respectively. For all tests, BD-rates for D1 are improved and BD-rates for D2 are degraded, because the propose method just uses D1 MSE as the cost function to select node size. These tendency is same as reported in [2]. In [2], it is also reported that when D2 MSE is additionally used as the cost function, D2 BD-rates are improved. Therefore, D2 BD-rates may be improved by using D2 MSE as the cost function. In the following results, test C has the largest coding gains in terms of D1 BD-rates.

[bookmark: _Ref76992775]Table 5 Node size settings.
	Method
	Node size log2

	
	r01
	r02
	r03
	r04

	Anchor (CTC)
	5
	4
	3
	2

	Test A (node size = CTC & CTC+1)
	6, 5
	5, 4
	4, 3
	3, 2

	Test B (max node size = 4)
	5
	4
	4, 3
	4, 3, 2

	Test C (max node size = 5)
	5
	5, 4
	5, 4, 3
	5, 4, 3, 2

[bookmark: _Ref76993437]Table 6 Experimental results for test A.
	C2_ai
	lossy geometry, lossy attributes [all intra]

	
	End-to-End BDAttrRate [%]
	Geom. BDTotGeomRate [%]

	
	Luma
	Chroma Cb
	Chroma Cr
	Reflectance
	D1
	D2

	Cat1-A average
	0.4%
	0.5%
	0.4%
	
	-1.5%
	6.8%

	Cat1-B average
	-0.1%
	0.1%
	0.7%
	
	-2.6%
	6.8%

	Cat3-fused average
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!

	Cat3-frame average
	
	
	
	#DIV/0!
	#DIV/0!
	#DIV/0!

	Overall average
	0.1%
	0.3%
	0.5%
	#DIV/0!
	-2.1%
	6.8%

	Avg. Enc Time [%]
	173%

	Avg. Dec Time [%]
	104%

[bookmark: _Ref76993499]Table 7 Experimental results for test B.
	C2_ai
	lossy geometry, lossy attributes [all intra]

	
	End-to-End BDAttrRate [%]
	Geom. BDTotGeomRate [%]

	
	Luma
	Chroma Cb
	Chroma Cr
	Reflectance
	D1
	D2

	Cat1-A average
	0.5%
	0.5%
	0.4%
	
	-1.8%
	1.2%

	Cat1-B average
	0.5%
	0.4%
	0.4%
	
	-1.4%
	2.4%

	Cat3-fused average
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!

	Cat3-frame average
	
	
	
	#DIV/0!
	#DIV/0!
	#DIV/0!

	Overall average
	0.5%
	0.5%
	0.4%
	#DIV/0!
	-1.6%
	1.8%

	Avg. Enc Time [%]
	137%

	Avg. Dec Time [%]
	99%

[bookmark: _Ref76993446]Table 8 Experimental results for test C.
	C2_ai
	lossy geometry, lossy attributes [all intra]

	
	End-to-End BDAttrRate [%]
	Geom. BDTotGeomRate [%]

	
	Luma
	Chroma Cb
	Chroma Cr
	Reflectance
	D1
	D2

	Cat1-A average
	0.5%
	0.6%
	0.4%
	
	-2.4%
	7.3%

	Cat1-B average
	0.6%
	0.6%
	0.7%
	
	-2.7%
	10.0%

	Cat3-fused average
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!

	Cat3-frame average
	
	
	
	#DIV/0!
	#DIV/0!
	#DIV/0!

	Overall average
	0.5%
	0.6%
	0.6%
	#DIV/0!
	-2.5%
	8.7%

	Avg. Enc Time [%]
	172%

	Avg. Dec Time [%]
	99%

Conclusion
In this contribution, it was proposed that an extention of Trisoup to multi-level. By the proposed mtehod, a Trisoup node size can be selected for each node in the range of minTrisoupNodeSize to maxTrisoupNodeSize.
This work was supported by Ministry of Internal Affairs and Communications (MIC) of Japan (Grant no. JPJ000595).
References
[1] [bookmark: _Ref69290429][bookmark: _Ref43296492]“G-PCC Future Enhancements“, ISO/IEC JTC1/SC29/WG11 N19522, Online, June 2020.
[2] [bookmark: _Ref69293800]A. Dricot, J. Ascenso, “Adaptive Multi-Level Triangle Soup for Geometry-based Point Cloud Coding,“ 2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP), September 2019.
image1.png

