INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 7
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC 1/SC 29/WG 7 m58051
Online – October 2021

Title: [G-PCC] EE13.47 report on spherical coordinate geometry
Author: Noritaka Iguchi, Toshiyasu Sugio

[bookmark: _Ref53022805]Abstract
This contribution is a report of EE13.47 on spherical coordinate geometry[2].
We proposed new decoding process and HLS for spherical output on geometry angular predictive coding [1].

The concept for the proposed method was agreed in MPEG134 meeting and the software [3] and specification draft [4] were provided in MPEG135.

Mandates for EE13.47 is to investigate the decoding process and High-Level syntax and the specification. In particular, to verifier the software and specification draft that were provided in MPEG135.

Encoder process on Predictive Geometry Coding
Figure 1 shows a diagram of the encoder for predictive geometry coding.
Currently predictive geometry coding support two coding mode (angular mode on / off) that encode the cartesian coordinate input data. We proposed to add the new method that can encode the spherical coordinate input data with angular mode with no additional process.

This new method:
Point1: can input spherical coordinate data directly.
Point2: can quantize the residual even when no conversion error (residual 2).
Point3: no additional process (select the existing function by 1bit flag).

Input/output format: Cartesian coordinate, Angular mode: OFF
When encoding the cartesian coordinate data with the Cartesian coordinate system (angular mode = OFF), prediction, residual generation, quantization, and entropy coding are processed.

Input/output format: Cartesian coordinate, Angular mode: ON
When encoding the cartesian coordinate data with the Spherical coordinate system (angular mode = ON), the input data is converted from cartesian coordinate to spherical coordinate. Residual by predicting is encoded with spherical coordinate as Residual 1, and the residual due to coordinate transformation is quantized and encoded as Residual 2.

Input/output format: Spherical coordinate, Angular mode: ON [Proposal]
When encoding the spherical data with the Spherical coordinate system (angular mode = ON), the input data can be encoded with spherical coordinate system (angular mode = ON) directly.
 The process of coordinate conversion and Residual 2 encoding are not necessary compared to encoding with the Cartesian coordinate system. Instead of quantization of Residual 2, Residual 1 is quantized.

Each function to achieve this new encoding method is already included in the conventional encoder, so it can be easily achieved by switching the existing process.

[image:]

[bookmark: _Ref53022817]Figure 1 A diagram of the Encoder

Decoder process on predictive geometry coding
Figure 2 shows a diagram of the encoder. The process of the decoder is opposite of the encoder process.

[image:]

[bookmark: _Ref53025011]Figure 2 A diagram of the decoder

geom_spherical_coordinate_flag
Introduces a new flag geom_spherical_coordinate_flag in order to switch the coordinate conversion processing is used or not. In combination with angular_mode_enabled_flag, it can be switched between 3 modes.

[image:]
Figure 3 The flow to select the mode

Combination with spherical attribute coding
When using spherical mode, the coordinate of geometry decoder output is spherical coordinate. Attribute decoding can be achieved by using spherical attribute coding.
[image:]
Figure 4 Decoder

Origin offset
When using the cartesian coordinate for output, positions are offset by the value of angular origin and slice origin after decoding. But in the case the output is spherical coordinate, offset is not needed.

[image:]

Specification
Mandates for new EE13.47 is to formulate High Level Syntax and specification description with include below aspect.

1. New syntax in SPS/GPS be allocated in extension part.
2. Constraints the semantics with little changing the current syntax.
3. The component order (r, f, i) be described in the text.

[bookmark: _Toc528915252][bookmark: _Ref45230050]Definition of Spherical Coordinate output format
Cartesian format of a point cloud frame is defined in 6.1 in FDIS.
(A point cloud frame is an unordered list of points representing geometry and optional attribute information. Geometry information describes the location of points in a three-dimensional Cartesian space. Attributes are properties associated with each point, such as colour, or reflectance. An attribute comprises one or more components.)

In addition to above definition, the output format of spherical coordinates is defined as follows,

Geometry information may describe the location of points in a three-dimensional Spherical space (r, f, i).
When geometry information of output point cloud is spherical coordinate, an output point cloud format RecCloudPos in spherical coordinate system contains RecCloudPointCnt points.
The array RecCloudPos consists of the decoded point positions. The element RecCloud	Pos[ptIdx][k] is the k-th position component of the ptIdx-th point.
RecCloudPos[pointIdx][k], in {r, f, i } order.

Definition of the output component r, f, i
r is the length of the vector R from the origin to the point projected onto the x-y plane.
f is the angle between the vector R and x-axis expressed with 24 bits.
i is the index of laser.
Post Coordinate Conversion to Cartesian
The component of output point {PosSph[0], PosSph[1], PosSph[2]} in spherical coordinate can be converted to cartesian coordinate {PosStv[0], PosStv[1], PosStv[2]}.

let v = divExp2RoundHalfInf(LaserAngle[nodeSph[2]] × r, 17)

PosStv[0] = divExp2RoundHalfInf(PosSph[0] × iCos(PosSph[1], 24), 24)

PosStv[1] = divExp2RoundHalfInf(PosSph[0] × iSin(PosSph[1], 24), 24)

PosStv[2] = divExp2RoundHalfInf(v - LaserCorrection[nodeSph[2]], 3)

sps_geom_spherical_coordinate_flag in SPS extension field
	seq_parameter_set() {
	Descriptor

		main_profile_compatibility_flag
	u(1)

		reserved_profile_compatibility_201bits
	u(210)

		geom_spherical_coordinate_flag
	u(1)

		slice_reordering_constraint_flag
	u(1)

		unique_point_positions_constraint_flag
	u(1)

		level_idc
	u(8)

		sps_seq_parameter_set_id
	u(4)

		frame_ctr_bits
	u(5)

		slice_tag_bits
	u(5)

	…
	

		sps_bypass_stream_enabled_flag
	u(1)

		sps_entropy_continuation_enabled_flag
	u(1)

		sps_extension_flag
	u(1)

		if(sps_extension_flag)
	

			while(more_data_in_byte_stream())
	

				sps_extension_data_flag
	u(1)

		byte_alignment()
	

	}
	

sps_geom_spherical_coordinate_flag equal to 1 indicates that Coordinate system of the output point position format from the decoder is Spherical coordinate. sps_geom_spherical_coordinate_flag equal to 0 indicates that Coordinate system of the output point position format from the decoder is Cartesian coordinate. When not present, geom_spherical_enabled_flag is inferred to be 0.

[bookmark: _Hlk76394035]When sps_geom_spherical_coordinate_flag is equal to 1, it is a requirement of bitstream conformance that :
· geom_tree_type is equal to 1
· geometry_angular_enabled_flag is equal to 1
· geometry_azimuth_scaling_flag is equal to 1
· aps_coord_conv_flag is equal to 1

Constraint on cartesian origin
Add constraints on semantics without changing the current FDIS syntax.
In spherical output mode, slice origin and angular origin is inferred to 0 in the decoder.

SliceOrigin
if (!sps_geom_spherical_coordinate_flag)
SliceOriginStv[XyzToStv[k]] = gsh_box_origin_xyz[k] << gsh_box_log2_scale
else
 SliceOriginStv[XyzToStv[k]] = 0
AngularOrigin
for (k = 0; k < 3; k++)
 if (!sps_geom_spherical_coordinate_flag){
 if (geom_slice_angular_origin_present_flag)
 GeomAngularOrigin[XyzToStv[k]] = gsh_angular_origin_xyz[k]
 else
 GeomAngularOrigin[XyzToStv[k]] =
 geom_angular_origin_xyz[k] - SliceOriginStv[XyzToStv[k]]
}else
 GeomAngularOrigin[XyzToStv[k]] = 0

Predictive geometry decoding process
[image:]

When sps_geom_spherical_coordinate_flag is equal to 1 and geometry_angular_enabled_flag is equal to 1, decoding process of predictive geometry decoding with spherical output is as below

The decoding of a single predictive tree is initiated by invoking the recursive position decoding process (8.2.6.3) with the inputs residualSph set equal to the array PtnResidual, curDepth set equal to 0, and aPos0, aPos1, and aPos2 each set equal to {0, 0, 0}

The array nodeSph is the decoded point position in the angular coding domain. It is a requirement of bitstream conformance that nodeSph[2] shall be in the range 0 .. number_lasers_minus1.
//azimuth inverse scaling process

for (k = 0; k < 3; k++)
 nodeSph[k] = predPos[k] + residualSph[curNodeIdx][k]

nodeSph[1] += PtnPhiMult[curNodeIdx] × (geom_angular_azimuth_step_minus1 + 1)

nodeSph[0] = nodeSph[0] << geom_angular_radius_scale_log2
nodeSph[1] = nodeSph[1] << (12 - geom_angular_azimth_scale_log2_minus11)

The decoded point position is output for each point represented by the current node.
for (i = 0; i < ptnPointCount[curNodeIdx]; i++, PointCount++)
 for (k = 0; k < 3; k++) {
 PointSph[PointCount][k] = nodeSph[k]
 }

Geometry predictive tree node syntax

In spherical input/output mode, the syntax of residual 2 (ptn_sec_residual_***) is unnecessary because there is no coordinate conversion error.

	geometry_predtree_node(CurDepth, nodeIdx) {
	Descriptor

		….
	

		numComp = geometry_angular_enabled_flag && !number_lasers_minus1 ? 2 : 3
	

		for(k = 0; k < numComp; k++) {
	

			ptn_residual_abs_gt0_flag[k]
	ae(v)

			if(ptn_residual_abs_gt0_flag[k]) {
	

				ptn_residual_abs_log2[k]
	ae(v)

				ptn_residual_abs_remaining[k]
	ae(v)

				if(k || ptn_pred_mode[nodeIdx])
	

					ptn_residual_sign_flag[k]
	ae(v)

			}
	

		}
	

		if(geometry_angular_enabled_flag
&& !geom_spherical_coordinate_flag)
	

			for(k = 0; k < 3; k++) {
	

				ptn_sec_residual_abs_gt0_flag[k]
	ae(v)

				if(ptn_sec_residual_abs_gt0_flag[k]) {
	

					ptn_sec_residual_abs_gt1_flag[k]
	ae(v)

					if(ptn_sec_residual_abs_gt1_flag[k])
	

						ptn_sec_residual_abs_minus2[k]
	ae(v)

					ptn_sec_residual_sign_flag[k]
	ae(v)

				}
	

			}
	

		for(i = 0; i < ptn_child_cnt[nodeIdx]; i++)
	

			geometry_predtree_node(CurDepth + 1, ++PtnNodeIdx)
	

	}
	

Conclusion
The concept of spherical output format in angular predictive geometry coding was agreed in MPEG134 meeting and the software [3] and specification draft [4] were provided in MPEG135. The specification draft include:
· Definition of Spherical Coordinate output
· Syntax and Semantics in SPS extension field
· Constraint on cartesian origin
· Decoding process
· Predictive tree node syntax

We recommend adding this proposed specification draft to G-PCC amendment specification.
References
[1] [bookmark: _Ref535519819][bookmark: _Ref57745496][bookmark: _Ref511145482][G-PCC][New] Predictive geometry angular mode using spherical LiDAR data input, ISO/IEC JTC1/SC29/WG7 MPEG2020/m55361 October 2020, Online.
[2] [bookmark: _Ref511739200][bookmark: _Ref57745922]Description of EE4FE 13.47 on spherical coordinate geometry, ISO/IEC JTC1/SC29 WG7 MDS20629_WG07_N00153, July 2021, Online
[3] TMC13 Software of 13.47 on spherical coordinate geometry
 http://mpegx.int-evry.fr/software/MPEG/PCC/CE/mpeg-pcc-tmc13/-/tree/mpeg135/mtg/m54258-ee1347_SphericalCoordGeom
[4] [G-PCC] EE13.47 report on spherical coordinate geometry, ISO/IEC JTC1/SC29/WG7 MPEG2021/m57358 July 2021, Online.
image3.png

image4.png

image5.png

image6.png

image1.png

image2.png

