
Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved.

m55951
Bugfix of vertices sorting in Trisoup by 
alternative method

Kyohei Unno, Kei Kawamura

KDDI Corp. (KDDI Research, Inc.)



Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 2

◼ Problem statement
⚫ In the previous meeting, a problem on the subjective quality of Trisoup was 

pointed out.
⚫ We found that the main cause of the problem seems to be in the vertices sorting 

process by approximated Atan. 

◼ Proposal
⚫ An alternative vertex sorting process is proposed.
⚫ Vertices are sorted by their coordinate value directly instead of using 

approximated Atan.
⚫ The proposed method solves the problem and simplifies the process (division 

free).

◼ Experimental results
⚫ Almost all of the subjective problems are disappeared.
⚫ Some coding losses observed. However, they are identical results in case of using 

double precision Atan (not approximated).

Overview



Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 3

◼ In the previous meeting, a problem on the subjective quality 
of Trisoup was pointed out in m55493.

⚫ It is reported that some malformed nodes are observed.

◼ We found that the main cause of generating malformed 
nodes seems to be in the vertices sorting process 

Problem Statement

Decode vertex positions

Determine projection plane

Sort vertices

Generate triangles

Rasterize



Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 4

◼ The current sorting process

⚫ Angle of each vertex is calculated by trisoupAtan2().

⚫ trisoupAtan2() is an approximation of arctangent.

⚫ Vertices are sorted by angles in ascending order.

◼ Expected and actual outputs trisoupAtan2().

⚫ Actual outputs lead to wrong ordering.

Problem Statement (Cont.)

θ

12

3 4 5

0

500

1000

1500

2000

0 50 100 150 200 250 300 350

O
u

tp
u

t 
va

lu
e

Input [deg]

Expected behavior of trisoupAtan2

0

500

1000

1500

2000

0 50 100 150 200 250 300 350

O
u

tp
u

t 
va

lu
e

Input [deg]

Actual behavior of trisoupAtan2



Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 5

◼ Relationship between vertex sorting results and triangle is hardcoded.

◼ Therefore, wrong ordering may cause malformed nodes.

Problem Statement (Cont.)

𝒏 triangles

3 (1,2,3)

4 (1,2,3), (3,4,1)

5 (1,2,3), (3,4,5), (5,1,3)

6 (1,2,3), (3,4,5), (5,6,1), (1,3,5)

7 (1,2,3), (3,4,5), (5,6,7), (7,1,3), (3,5,7)

8 (1,2,3), (3,4,5), (5,6,7), (7,8,1), (1,3,5), (5,7,1)

9 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,1,3), (3,5,7), (7,9,3)

10 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,1), (1,3,5), (5,7,9), (9,1,5)

11 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,11), (11,1,3), (3,5,7), (7,9,11), (11,3,7)

12 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,11), (11,12,1), (1,3,5), (5,7,9), (9,11,1), (1,5,9)

12

3 4 5

21

3 5 4

1
2

3
4

5

2
1

3
5

4

Correct order ☺ Wrong order 



Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 6

Problem Statement (Cont.)

int32_t
trisoupAtan2(int32_t x, int32_t y)
{
assert(x != 0 && y != 0);
if (y == 0) {
if (x < 0)
return 804; // PI * (1<< kTrisoupFpBits)

else
return 0;

} else if (x == 0) {
if (y > 0)
return 402; // (PI/2) * (1<< kTrisoupFpBits)

else
return 1206; // (PI*3/2) * (1<< kTrisoupFpBits)

} else {
int idx = 0;
int z = abs((y << 8) / x); //rad is calc in (x>0 && y>0) domain
if (z <= 256) { //1<<kTrisoupFpBits
idx = z / 12; //0.05<<kTrisoupFpBits

} else {
idx = z > 40 ? 40 : z;

}

static const int kAtanLut[41] = {
0, 12, 25, 38, 50, 62, 74, 86, 97, 108, 118, 128, 138, 147,
156, 164, 172, 180, 187, 194, 201, 283, 319, 339, 351, 359, 365, 370,
373, 376, 378, 380, 382, 383, 385, 386, 387, 387, 388, 389, 389};

int atan = kAtanLut[idx];

//offset
if (x < 0 && y > 0)
atan += 402; // + PI/2

else if (x < 0 && y < 0)
atan += 804; // + PI

else if (x > 0 && y < 0)
atan += 1206; // + PI*3/2

return atan;
}

}

0

500

1000

1500

2000

0 50 100 150 200 250 300 350

O
u

tp
u

t 
va

lu
e

Input [deg]

Actual behavior of trisoupAtan2

1

2

◼ There are two problems.

1. Rad is always calculated in the first 
quadrant.

• Order is reversed in the second and 
fourth quadrant

2. In else part, idx is constant.

• Resulted atan is also constant.

◼ Additionally, divisions are used.

1

1
2

2



Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 7

◼ It is proposed that an alternative vertex sorting.

⚫ It solves the problem with simpler method than the current implementation.

◼ Vertices are always on edges of the projected square.

⚫ Coordinate values are directly used to sort instead of approximated Atan.

⚫ Ex) When a vertex is on the horizontal edge,
coordinate value of vertical axis is used.

⚫ A offset value is added to ensure circulate order.

Proposal

int32_t

trisoupVertexScore(int32_t x, int32_t y, int32_t halfWidth)

{

int32_t score;

if(x >= halfWidth){

score = y; // for side A

if (y < 0) {

score += (halfWidth * 8); // for side A’

}

} else if (y >= halfWidth) {

score = -x + (halfWidth * 2); // for side B

} else if (x <= -halfWidth) {

score = -y + (halfWidth * 4); // for side C

} else {

score = x + (halfWidth * 6); // for side D

}

return score;

}

𝑶 𝒂

𝒃

𝒉𝒂𝒍𝒇𝑾𝒊𝒅𝒕𝒉

𝒉𝒂𝒍𝒇𝑾𝒊𝒅𝒕𝒉

−𝒉𝒂𝒍𝒇𝑾𝒊𝒅𝒕𝒉

−𝒉𝒂𝒍𝒇𝑾𝒊𝒅𝒕𝒉

side A

side B

side C

side D

side A’

θ

12

3 4 5



Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 8

◼ Subjective evaluation

⚫ Almost all of the subjective problems (small holes) are disappeared.

Experimental results

Anchor (TMC13-v12.0) Proposed method

Reconstructed point clouds (longdress_vox10_1300 r03)



Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 9

◼ Subjective evaluation

⚫ Almost all of the subjective problems (small holes) are disappeared.

Experimental results

Anchor (TMC13-v12.0) Proposed method

Reconstructed point clouds (queen_0200 r03)



Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 10

◼ Conditions

⚫ Anchor : TMC13-v12.0

⚫ Trisoup – RAHT (Only C2 condition, Cat1 
Sequences)

◼ Objective results

⚫ BD-rates for geometry are 0.4%, 2.1% (D1, D2).

⚫ This result is identical to the case of using 
double precision Atan (std::atan2()).

Experimental results

C2_ai
lossy geometry, lossy attributes [all intra]

End-to-End BD-AttrRate [%] Geom. BD-TotGeomRate [%]
Luma Chroma Cb Chroma Cr Reflectance D1 D2

Cat1-A average -1.0% -0.5% -0.3% -0.4% 1.2%

Cat1-B average 0.3% -0.7% -0.3% 1.1% 2.9%
Cat3-fused average #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Cat3-frame average #DIV/0! #DIV/0! #DIV/0!
Overall average -0.3% -0.6% -0.3% #DIV/0! 0.4% 2.1%
Avg. Enc Time [%] 100%
Avg. Dec Time [%] 98%

int32_t

trisoupAtan2(int32_t x, int32_t y)

{

int atan;

double PI = 3.141592;

if (y < 0){

atan = (402 * (std::atan2(y, x) + 2 * PI) * 2 / PI);

}else{

atan = (402 * std::atan2(y, x) * 2 / PI);

}

return atan;

}



Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 11

◼ The peak loss is observed at palazzo_carignano_dense_vox14 (about 10%).

◼ On the other hand, subjective quality is improved.

Experimental results

Anchor (TMC13-v12.0) Proposed method

Reconstructed point clouds (palazzo_carignano_dense_vox14 r03)



Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 12

◼ Problem statement
⚫ In the previous meeting, a problem on the subjective quality of Trisoup was 

pointed out.
⚫ We found that the main cause of the problem seems to be in the vertices sorting 

process by approximated Atan. 

◼ Proposal
⚫ An alternative vertex sorting process is proposed.
⚫ Vertices are sorted by their coordinate value directly instead of using 

approximated Atan.
⚫ The proposed method solves the problem and simplifies the process (division 

free).

◼ Experimental results
⚫ Almost all of the subjective problems are disappeared.
⚫ Some coding losses observed. However, they are identical results in case of using 

double precision Atan (not approximated).

◼Recommendation
⚫ The proposal is adopted to the next version of the test model as the starting 

point of solving the problem.

Conclusion


