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◼ Problem statement
⚫ In the previous meeting, a problem on the subjective quality of Trisoup was 

pointed out.
⚫ We found that the main cause of the problem seems to be in the vertices sorting 

process by approximated Atan. 

◼ Proposal
⚫ An alternative vertex sorting process is proposed.
⚫ Vertices are sorted by their coordinate value directly instead of using 

approximated Atan.
⚫ The proposed method solves the problem and simplifies the process (division 

free).

◼ Experimental results
⚫ Almost all of the subjective problems are disappeared.
⚫ Some coding losses observed. However, they are identical results in case of using 

double precision Atan (not approximated).

Overview
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◼ In the previous meeting, a problem on the subjective quality 
of Trisoup was pointed out in m55493.

⚫ It is reported that some malformed nodes are observed.

◼ We found that the main cause of generating malformed 
nodes seems to be in the vertices sorting process 

Problem Statement

Decode vertex positions

Determine projection plane

Sort vertices

Generate triangles

Rasterize
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◼ The current sorting process

⚫ Angle of each vertex is calculated by trisoupAtan2().

⚫ trisoupAtan2() is an approximation of arctangent.

⚫ Vertices are sorted by angles in ascending order.

◼ Expected and actual outputs trisoupAtan2().

⚫ Actual outputs lead to wrong ordering.

Problem Statement (Cont.)
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◼ Relationship between vertex sorting results and triangle is hardcoded.

◼ Therefore, wrong ordering may cause malformed nodes.

Problem Statement (Cont.)

𝒏 triangles

3 (1,2,3)

4 (1,2,3), (3,4,1)

5 (1,2,3), (3,4,5), (5,1,3)

6 (1,2,3), (3,4,5), (5,6,1), (1,3,5)

7 (1,2,3), (3,4,5), (5,6,7), (7,1,3), (3,5,7)

8 (1,2,3), (3,4,5), (5,6,7), (7,8,1), (1,3,5), (5,7,1)

9 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,1,3), (3,5,7), (7,9,3)

10 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,1), (1,3,5), (5,7,9), (9,1,5)

11 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,11), (11,1,3), (3,5,7), (7,9,11), (11,3,7)

12 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,11), (11,12,1), (1,3,5), (5,7,9), (9,11,1), (1,5,9)

12

3 4 5

21

3 5 4

1
2

3
4

5

2
1

3
5

4

Correct order ☺ Wrong order 



Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 6

Problem Statement (Cont.)

int32_t
trisoupAtan2(int32_t x, int32_t y)
{
assert(x != 0 && y != 0);
if (y == 0) {
if (x < 0)
return 804; // PI * (1<< kTrisoupFpBits)

else
return 0;

} else if (x == 0) {
if (y > 0)
return 402; // (PI/2) * (1<< kTrisoupFpBits)

else
return 1206; // (PI*3/2) * (1<< kTrisoupFpBits)

} else {
int idx = 0;
int z = abs((y << 8) / x); //rad is calc in (x>0 && y>0) domain
if (z <= 256) { //1<<kTrisoupFpBits
idx = z / 12; //0.05<<kTrisoupFpBits

} else {
idx = z > 40 ? 40 : z;

}

static const int kAtanLut[41] = {
0, 12, 25, 38, 50, 62, 74, 86, 97, 108, 118, 128, 138, 147,
156, 164, 172, 180, 187, 194, 201, 283, 319, 339, 351, 359, 365, 370,
373, 376, 378, 380, 382, 383, 385, 386, 387, 387, 388, 389, 389};

int atan = kAtanLut[idx];

//offset
if (x < 0 && y > 0)
atan += 402; // + PI/2

else if (x < 0 && y < 0)
atan += 804; // + PI

else if (x > 0 && y < 0)
atan += 1206; // + PI*3/2

return atan;
}

}
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◼ There are two problems.

1. Rad is always calculated in the first 
quadrant.

• Order is reversed in the second and 
fourth quadrant

2. In else part, idx is constant.

• Resulted atan is also constant.

◼ Additionally, divisions are used.
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◼ It is proposed that an alternative vertex sorting.

⚫ It solves the problem with simpler method than the current implementation.

◼ Vertices are always on edges of the projected square.

⚫ Coordinate values are directly used to sort instead of approximated Atan.

⚫ Ex) When a vertex is on the horizontal edge,
coordinate value of vertical axis is used.

⚫ A offset value is added to ensure circulate order.

Proposal

int32_t

trisoupVertexScore(int32_t x, int32_t y, int32_t halfWidth)

{

int32_t score;

if(x >= halfWidth){

score = y; // for side A

if (y < 0) {

score += (halfWidth * 8); // for side A’

}

} else if (y >= halfWidth) {

score = -x + (halfWidth * 2); // for side B

} else if (x <= -halfWidth) {

score = -y + (halfWidth * 4); // for side C

} else {

score = x + (halfWidth * 6); // for side D

}

return score;

}

𝑶 𝒂

𝒃

𝒉𝒂𝒍𝒇𝑾𝒊𝒅𝒕𝒉

𝒉𝒂𝒍𝒇𝑾𝒊𝒅𝒕𝒉

−𝒉𝒂𝒍𝒇𝑾𝒊𝒅𝒕𝒉

−𝒉𝒂𝒍𝒇𝑾𝒊𝒅𝒕𝒉

side A

side B

side C

side D

side A’
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◼ Subjective evaluation

⚫ Almost all of the subjective problems (small holes) are disappeared.

Experimental results

Anchor (TMC13-v12.0) Proposed method

Reconstructed point clouds (longdress_vox10_1300 r03)
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◼ Subjective evaluation

⚫ Almost all of the subjective problems (small holes) are disappeared.

Experimental results

Anchor (TMC13-v12.0) Proposed method

Reconstructed point clouds (queen_0200 r03)
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◼ Conditions

⚫ Anchor : TMC13-v12.0

⚫ Trisoup – RAHT (Only C2 condition, Cat1 
Sequences)

◼ Objective results

⚫ BD-rates for geometry are 0.4%, 2.1% (D1, D2).

⚫ This result is identical to the case of using 
double precision Atan (std::atan2()).

Experimental results

C2_ai
lossy geometry, lossy attributes [all intra]

End-to-End BD-AttrRate [%] Geom. BD-TotGeomRate [%]
Luma Chroma Cb Chroma Cr Reflectance D1 D2

Cat1-A average -1.0% -0.5% -0.3% -0.4% 1.2%

Cat1-B average 0.3% -0.7% -0.3% 1.1% 2.9%
Cat3-fused average #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Cat3-frame average #DIV/0! #DIV/0! #DIV/0!
Overall average -0.3% -0.6% -0.3% #DIV/0! 0.4% 2.1%
Avg. Enc Time [%] 100%
Avg. Dec Time [%] 98%

int32_t

trisoupAtan2(int32_t x, int32_t y)

{

int atan;

double PI = 3.141592;

if (y < 0){

atan = (402 * (std::atan2(y, x) + 2 * PI) * 2 / PI);

}else{

atan = (402 * std::atan2(y, x) * 2 / PI);

}

return atan;

}
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◼ The peak loss is observed at palazzo_carignano_dense_vox14 (about 10%).

◼ On the other hand, subjective quality is improved.

Experimental results

Anchor (TMC13-v12.0) Proposed method

Reconstructed point clouds (palazzo_carignano_dense_vox14 r03)
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◼ Problem statement
⚫ In the previous meeting, a problem on the subjective quality of Trisoup was 

pointed out.
⚫ We found that the main cause of the problem seems to be in the vertices sorting 

process by approximated Atan. 

◼ Proposal
⚫ An alternative vertex sorting process is proposed.
⚫ Vertices are sorted by their coordinate value directly instead of using 

approximated Atan.
⚫ The proposed method solves the problem and simplifies the process (division 

free).

◼ Experimental results
⚫ Almost all of the subjective problems are disappeared.
⚫ Some coding losses observed. However, they are identical results in case of using 

double precision Atan (not approximated).

◼Recommendation
⚫ The proposal is adopted to the next version of the test model as the starting 

point of solving the problem.

Conclusion


