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◼ Background
⚫ Vertex sorting in Trisoup was done by an approximation of arctangent.

⚫ However, the approximation had a bug and bugfix proposed in m55951 was adopted 
to the test model at the previous meeting.

⚫ On the other hand, G-PCC has another “high precision” approximation of 
arctangent (iatan2).

◼ Methods
⚫ iatan2 : Sorting vertices from 9 o’clock with anticlockwise rotation.

⚫ TMC13 v13 (m55951) : Originally sorting vertices from 3 o’clock with anticlockwise 
rotation. This process is much simpler than iatan2.

◼ Experimental results
⚫ m55951(from 3 o’clock) vs iatan2 : BD-rates for geometry are -0.1%, -0.3% (D1, D2).

⚫ m55951(from 9 o’clock) vs iatan2 : identical results.

Overview
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◼ In the decoding process of Trisoup, vertices of each Trisoup
node are sorted to generate triangles.

◼ Previously, an approximation of arctangent was used to 
calculate 𝜽 for sorting.

◼ However, the approximation had a bug and bugfix proposed 
in m55951 was adopted to the test model at the previous 
meeting.

Vertex sorting in Trisoup

Decode vertex positions

Determine projection plane
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◼ iatan2()

⚫ Vertices can be sorted from 9 o’clock with anticlockwise rotation.

⚫ Worst case complexity for a vertex

Another “high precision” approximation of arctangent
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Behavior of iatan2

int
iatan2Core(int y, int x)
{
using namespace atan2;

// ratio y/x knowing that x,y >0 and y<=x
if (x == 0)

return 0;

uint64_t rinv =
irsqrt(uint64_t(x) * uint64_t(x) + uint64_t(y) * uint64_t(y));

int r = (y * rinv) >> 20; // 40 - 20 = 20 bits precision
int idx = r >> 11;
int lambda = r - (idx << 11);
return kAsin[idx] + (lambda * (kAsin[idx + 1] - kAsin[idx]) >> 11);

}
int
iatan2(int y, int x)
{
int xa = std::abs(x);
int ya = std::abs(y);

// atan or pi/2 - atan
int t = ya <= xa ? iatan2Core(ya, xa) : 1647099 - iatan2Core(xa, ya);
if (x < 0)

t = 3294199 - t; // pi -atan

return y < 0 ? -t : t;
}
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◼ Vertices are always on edges of the projected square.

⚫ Coordinate values are directly used to sort instead of approximated Atan.

⚫ Ex) When a vertex is on the horizontal edge,
coordinate value of vertical axis is used.

⚫ A offset value is added to ensure circulate order.

⚫ Worst case complexity for a vertex.

Vertex sorting in TMC13 v13 (m55951)

int32_t

trisoupVertexScore(int32_t x, int32_t y, int32_t halfWidth)

{

int32_t score;

if(x >= halfWidth){

score = y; // for side A

if (y < 0) {

score += (halfWidth * 8); // for side A’

}

} else if (y >= halfWidth) {

score = -x + (halfWidth * 2); // for side B

} else if (x <= -halfWidth) {

score = -y + (halfWidth * 4); // for side C

} else {

score = x + (halfWidth * 6); // for side D

}

return score;

}
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◼ Starting point for sorting

⚫ iatan2 : 9 o’clock

⚫ TMC13 v13 (m55951) : originally 3 o’clock.
Starting point can be changed (e.g. from 9 o’clock) easily. 
Complexity does not change.

Starting point for sorting
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int32_t

trisoupVertexScore(int32_t x, int32_t y, int32_t halfWidth)

{

int32_t score;

if(x >= halfWidth){

score = y + (halfWidth * 4); // for side A

} else if (y >= halfWidth) {

score = -x + (halfWidth * 6); // for side B

} else if (x <= -halfWidth) {

score = -y; // for side C

if (y >= 0) {

score += (halfWidth * 8); // for side C’

}

} else {

score = x + (halfWidth * 2); // for side D

}

return score;

}
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◼ Conditions

⚫ Anchor : TMC13-v12.0 + m55951 (from 3 o’clock)

⚫ Test : TMC13-v12.0 + iatan2 (from 9 o’clock)

⚫ Trisoup – RAHT (Only C2 condition, Cat1 Sequences)

◼ Objective results

⚫ BD-rates for geometry are -0.1%, -0.3% (D1, D2).

⚫ Coding performance difference is very minor.

Experimental results (1/2)

C2_ai
lossy geometry, lossy attributes [all intra]

End-to-End BD-AttrRate [%] Geom. BD-TotGeomRate [%]
Luma Chroma Cb Chroma Cr Reflectance D1 D2

Cat1-A average 0.3% 0.0% 0.4% -0.1% -0.6%
Cat1-B average -0.3% 0.1% 0.5% -0.1% 0.0%
Cat3-fused average #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
Cat3-frame average #DIV/0! #DIV/0! #DIV/0!
Overall average 0.0% 0.0% 0.5% #DIV/0! -0.1% -0.3%
Avg. Enc Time [%] 104%
Avg. Dec Time [%] 95%
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◼ Conditions

⚫ Anchor : TMC13-v12.0 + m55951 (from 9 o’clock)

⚫ Test : TMC13-v12.0 + iatan2 (from 9 o’clock)

⚫ Trisoup – RAHT (Only C2 condition, Cat1 Sequences)

◼ Objective results

⚫ Coding performances are identical.

⚫ Difference in the previous slide just come from difference of the starting point.

Experimental results (2/2)

C2_ai
lossy geometry, lossy attributes [all intra]

End-to-End BD-AttrRate [%] Geom. BD-TotGeomRate [%]
Luma Chroma Cb Chroma Cr Reflectance D1 D2

Cat1-A average 0.0% 0.0% 0.0% 0.0% 0.0%
Cat1-B average 0.0% 0.0% 0.0% 0.0% 0.0%
Cat3-fused average #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
Cat3-frame average #DIV/0! #DIV/0! #DIV/0!
Overall average 0.0% 0.0% 0.0% #DIV/0! 0.0% 0.0%
Avg. Enc Time [%] 100%
Avg. Dec Time [%] 100%
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◼ Background
⚫ Vertex sorting in Trisoup was done by an approximation of arctangent.
⚫ However, the approximation had a bug and bugfix proposed in m55951 was adopted to 

the test model at the previous meeting.
⚫ On the other hand, G-PCC has another “high precision” approximation of arctangent 

(iatan2).

◼ Methods
⚫ iatan2 : Sorting vertices from 9 o’clock with anticlockwise rotation.
⚫ TMC13 v13 (m55951) : Originally sorting vertices from 3 o’clock with anticlockwise 

rotation. This process is much simpler than iatan2.

◼ Experimental results
⚫ m55951(from 3 o’clock) vs iatan2 : BD-rates for geometry are -0.1%, -0.3% (D1, D2).
⚫ m55951(from 9 o’clock) vs iatan2 : identical results.

◼ Recommendation
⚫ No action (keep the current TMC13 v13 implementation).

Conclusion


