
Copyright(C) 2021 KDDI Research, Inc. All Rights Reserved.

m56732
Evaluation on Trisoup vertex sorting

Kyohei Unno, Kei Kawamura

KDDI Corp. (KDDI Research, Inc.)



Copyright(C) 2021 KDDI Research, Inc. All Rights Reserved. 2

◼ Background
⚫ Vertex sorting in Trisoup was done by an approximation of arctangent.

⚫ However, the approximation had a bug and bugfix proposed in m55951 was adopted 
to the test model at the previous meeting.

⚫ On the other hand, G-PCC has another “high precision” approximation of 
arctangent (iatan2).

◼ Methods
⚫ iatan2 : Sorting vertices from 9 o’clock with anticlockwise rotation.

⚫ TMC13 v13 (m55951) : Originally sorting vertices from 3 o’clock with anticlockwise 
rotation. This process is much simpler than iatan2.

◼ Experimental results
⚫ m55951(from 3 o’clock) vs iatan2 : BD-rates for geometry are -0.1%, -0.3% (D1, D2).

⚫ m55951(from 9 o’clock) vs iatan2 : identical results.

Overview



Copyright(C) 2021 KDDI Research, Inc. All Rights Reserved. 3

◼ In the decoding process of Trisoup, vertices of each Trisoup
node are sorted to generate triangles.

◼ Previously, an approximation of arctangent was used to 
calculate 𝜽 for sorting.

◼ However, the approximation had a bug and bugfix proposed 
in m55951 was adopted to the test model at the previous 
meeting.

Vertex sorting in Trisoup

Decode vertex positions

Determine projection plane

Sort vertices

Generate triangles

Rasterize

θ

12

3 4 5

1
2

3
4

5



Copyright(C) 2021 KDDI Research, Inc. All Rights Reserved. 4

◼ iatan2()

⚫ Vertices can be sorted from 9 o’clock with anticlockwise rotation.

⚫ Worst case complexity for a vertex

Another “high precision” approximation of arctangent

-4000000

-2000000

0

2000000

4000000

0 30 60 90 120 150 180 210 240 270 300 330 360

O
u

tp
u

t 
va

lu
e

Input [deg]

Behavior of iatan2

int
iatan2Core(int y, int x)
{
using namespace atan2;

// ratio y/x knowing that x,y >0 and y<=x
if (x == 0)

return 0;

uint64_t rinv =
irsqrt(uint64_t(x) * uint64_t(x) + uint64_t(y) * uint64_t(y));

int r = (y * rinv) >> 20; // 40 - 20 = 20 bits precision
int idx = r >> 11;
int lambda = r - (idx << 11);
return kAsin[idx] + (lambda * (kAsin[idx + 1] - kAsin[idx]) >> 11);

}
int
iatan2(int y, int x)
{
int xa = std::abs(x);
int ya = std::abs(y);

// atan or pi/2 - atan
int t = ya <= xa ? iatan2Core(ya, xa) : 1647099 - iatan2Core(xa, ya);
if (x < 0)

t = 3294199 - t; // pi -atan

return y < 0 ? -t : t;
}

ADD MUL DIV SHIFT COMP

24 8 0 26 8



Copyright(C) 2021 KDDI Research, Inc. All Rights Reserved. 5

◼ Vertices are always on edges of the projected square.

⚫ Coordinate values are directly used to sort instead of approximated Atan.

⚫ Ex) When a vertex is on the horizontal edge,
coordinate value of vertical axis is used.

⚫ A offset value is added to ensure circulate order.

⚫ Worst case complexity for a vertex.

Vertex sorting in TMC13 v13 (m55951)

int32_t

trisoupVertexScore(int32_t x, int32_t y, int32_t halfWidth)

{

int32_t score;

if(x >= halfWidth){

score = y; // for side A

if (y < 0) {

score += (halfWidth * 8); // for side A’

}

} else if (y >= halfWidth) {

score = -x + (halfWidth * 2); // for side B

} else if (x <= -halfWidth) {

score = -y + (halfWidth * 4); // for side C

} else {

score = x + (halfWidth * 6); // for side D

}

return score;

}

𝑶 𝒂

𝒃

𝒉𝒂𝒍𝒇𝑾𝒊𝒅𝒕𝒉

𝒉𝒂𝒍𝒇𝑾𝒊𝒅𝒕𝒉

−𝒉𝒂𝒍𝒇𝑾𝒊𝒅𝒕𝒉

−𝒉𝒂𝒍𝒇𝑾𝒊𝒅𝒕𝒉

side A

side B

side C

side D

side A’

θ

12

3 4 5

ADD MUL DIV SHIFT COMP

1 1 0 0 3



Copyright(C) 2021 KDDI Research, Inc. All Rights Reserved. 6

◼ Starting point for sorting

⚫ iatan2 : 9 o’clock

⚫ TMC13 v13 (m55951) : originally 3 o’clock.
Starting point can be changed (e.g. from 9 o’clock) easily. 
Complexity does not change.

Starting point for sorting

𝑶 𝒂

𝒃

𝒉𝒂𝒍𝒇𝑾𝒊𝒅𝒕𝒉

𝒉𝒂𝒍𝒇𝑾𝒊𝒅𝒕𝒉

−𝒉𝒂𝒍𝒇𝑾𝒊𝒅𝒕𝒉

−𝒉𝒂𝒍𝒇𝑾𝒊𝒅𝒕𝒉

side A

side B

side C

side D

side A’

𝑶 𝒂

𝒃

𝒉𝒂𝒍𝒇𝑾𝒊𝒅𝒕𝒉

𝒉𝒂𝒍𝒇𝑾𝒊𝒅𝒕𝒉

−𝒉𝒂𝒍𝒇𝑾𝒊𝒅𝒕𝒉

−𝒉𝒂𝒍𝒇𝑾𝒊𝒅𝒕𝒉

side A

side B

side C’

side D

side C

int32_t

trisoupVertexScore(int32_t x, int32_t y, int32_t halfWidth)

{

int32_t score;

if(x >= halfWidth){

score = y + (halfWidth * 4); // for side A

} else if (y >= halfWidth) {

score = -x + (halfWidth * 6); // for side B

} else if (x <= -halfWidth) {

score = -y; // for side C

if (y >= 0) {

score += (halfWidth * 8); // for side C’

}

} else {

score = x + (halfWidth * 2); // for side D

}

return score;

}



Copyright(C) 2021 KDDI Research, Inc. All Rights Reserved. 7

◼ Conditions

⚫ Anchor : TMC13-v12.0 + m55951 (from 3 o’clock)

⚫ Test : TMC13-v12.0 + iatan2 (from 9 o’clock)

⚫ Trisoup – RAHT (Only C2 condition, Cat1 Sequences)

◼ Objective results

⚫ BD-rates for geometry are -0.1%, -0.3% (D1, D2).

⚫ Coding performance difference is very minor.

Experimental results (1/2)

C2_ai
lossy geometry, lossy attributes [all intra]

End-to-End BD-AttrRate [%] Geom. BD-TotGeomRate [%]
Luma Chroma Cb Chroma Cr Reflectance D1 D2

Cat1-A average 0.3% 0.0% 0.4% -0.1% -0.6%
Cat1-B average -0.3% 0.1% 0.5% -0.1% 0.0%
Cat3-fused average #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
Cat3-frame average #DIV/0! #DIV/0! #DIV/0!
Overall average 0.0% 0.0% 0.5% #DIV/0! -0.1% -0.3%
Avg. Enc Time [%] 104%
Avg. Dec Time [%] 95%



Copyright(C) 2021 KDDI Research, Inc. All Rights Reserved. 8

◼ Conditions

⚫ Anchor : TMC13-v12.0 + m55951 (from 9 o’clock)

⚫ Test : TMC13-v12.0 + iatan2 (from 9 o’clock)

⚫ Trisoup – RAHT (Only C2 condition, Cat1 Sequences)

◼ Objective results

⚫ Coding performances are identical.

⚫ Difference in the previous slide just come from difference of the starting point.

Experimental results (2/2)

C2_ai
lossy geometry, lossy attributes [all intra]

End-to-End BD-AttrRate [%] Geom. BD-TotGeomRate [%]
Luma Chroma Cb Chroma Cr Reflectance D1 D2

Cat1-A average 0.0% 0.0% 0.0% 0.0% 0.0%
Cat1-B average 0.0% 0.0% 0.0% 0.0% 0.0%
Cat3-fused average #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
Cat3-frame average #DIV/0! #DIV/0! #DIV/0!
Overall average 0.0% 0.0% 0.0% #DIV/0! 0.0% 0.0%
Avg. Enc Time [%] 100%
Avg. Dec Time [%] 100%



Copyright(C) 2021 KDDI Research, Inc. All Rights Reserved. 9

◼ Background
⚫ Vertex sorting in Trisoup was done by an approximation of arctangent.
⚫ However, the approximation had a bug and bugfix proposed in m55951 was adopted to 

the test model at the previous meeting.
⚫ On the other hand, G-PCC has another “high precision” approximation of arctangent 

(iatan2).

◼ Methods
⚫ iatan2 : Sorting vertices from 9 o’clock with anticlockwise rotation.
⚫ TMC13 v13 (m55951) : Originally sorting vertices from 3 o’clock with anticlockwise 

rotation. This process is much simpler than iatan2.

◼ Experimental results
⚫ m55951(from 3 o’clock) vs iatan2 : BD-rates for geometry are -0.1%, -0.3% (D1, D2).
⚫ m55951(from 9 o’clock) vs iatan2 : identical results.

◼ Recommendation
⚫ No action (keep the current TMC13 v13 implementation).

Conclusion


