INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 7
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC 1/SC 29/WG 7 m58773
Online – January 2022

Title: [G-PCC][EE13.50] Report on Triangle soup
Author: Kyohei Unno, Kei Kawamura (KDDI)
Abstract
In this contribution, it is reported that the result of EE 13.50 on Triangle soup.
Introduction
The goal of this EE is to study an extension of Trisoup to variable nodesize. Initial idea is proposed in [1]. In the current implementation of Trisoup, Trisoup node size can be defined as only one size for a slice [2]. In other words, the current implementation only supports single-level Trisoup. In terms of coding efficiency, an extension of Trisoup to multi-level could be improved coding efficiency by selecting node sizes according to the structure of an input point cloud.
In [3], it is proposed that implementation of adaptive multi-level Trisoup based on G-PCC, and it is reported that the adaptive multi-level Trisoup improves coding efficiency. Additionally, coding performances with cost functions for rate-distortion optimization of nodesize are porposed in [4].
Proposed method in m57368 [1]
Decoding process
In [1], it is proposed that an extension of Trisoup to variable node sizes. The proposed decoding process is as follows.

1) When trisoup_enabled_flag is true, multilevel_trisoup_enabled_flag is additionally decoded from GPS as shown in Table 1.
2) When multilevel_trisoup_enabled_flag is true, max_trisoup_node_size_log2 and mix_trisoup_node_size_log2 are decoded from GDUH instead of trisoup_node_size_log2 that is used for single-level Trisoup.
Then, information of unique segments are also decoded from GDUH as shown in Table 2.
3) Occupancy and trisoup_applied_flag are decoded for each node in each depth as shown in Table 3.
a) When the current node size is larger than the max trisoup node size, occupancy maps are decoded by conventional Octree decoding process.
b) Otherwise, when the current node size is equal to or smaller than the max trisoup node size and the current node size is larger than the min trisoup node size, trisoup_applied_flag is firstly decoded for each node.When trisoup_applied_flag is true, the current node is marked as Trisoup node of the current depth, then Octree process is terminated for the current node. Otherwise (trisoup_applied_flag is false), occupancy map is decoded and the current node is splitted by Octree.
c) Otherwise, when the current node size is equal to the min trisoup node size, all remaining nodes are marked as Trisoup node (same as single-level Trisoup).
4) Reconstructed points for each Trisoup nodes are generated as same as single-level Trisoup for each node, then reconstructed points for all depth are merged. Proposed syntax changes are shown in Table 4.

[bookmark: _Ref76031874]Table 1 The proposed syntax changes on Geometry Parameter Set.
	geometry_parameter_set() {
	Descriptor

		gps_geom_parameter_set_id
	ue(v)

	 ...
	

	 trisoup_enabled_flag
	u(1)

	 if (trisoup_enabled_flag) {
	

	[bookmark: _Hlk76031920]	 trisoup_multilevel_enabled_flag
	u(1)

		}
	

		...
	

	}
	

[bookmark: _Ref76403174]Table 2 The proposed syntax changes on Geometry Data Unit Header.
	geometry_data_unit_header() {
	Descriptor

		gsh_geometry_parameter_set_id
	ue(v)

	 ...
	

	 if (trisoup_enabled_flag) {
	

		 if(trisoup_multilevel_enabled_flag) {
	

		 log2_trisoup_max_node_size_minus2
	ue(v)

		 log2_trisoup_min_node_size_minus2
	ue(v)

		 trisoup_depth = log2_trisoup_max_node_size_minus2 - log2_trisoup_min_node_size_minus2 + 1
	

		 }else{
	

		 log2_trisoup_node_size_minus2
	ue(v)

		 trisoup_depth = 1
	

		 }
	

		 trisoup_sampling_value_minus1
	ue(v)

		 for (i = 0; i < trisoup_depth; i++){
	

		 unique_segments_exist_flag[i]
	u(1)

		 if (unique_segments_exist_flag[i]) {
	

		 num_unique_segments_bits_minus1[i]
	ue(v)

		 num_unique_segments_minus1 [i]
	u(v)

		 }
	

		 }
	

		}
	

		...
	

	}
	

[bookmark: _Ref76986479]Table 3 The proposed syntax changes on Geometry octree node syntax.
	geometry_node(depth, nodeIdx, sN, tN, vN) {
	Descriptor

		if(geom_node_qp_offset_present_flag) {
	

			geom_node_qp_offset_abs_gt0_flag
	ae(v)

			if(geom_node_qp_offset_abs_gt0_flag) {
	

				geom_node_qp_offset_abs_minus1
	ae(v)

				geom_node_qp_offset_sign_flag
	ae(v)

			}
	

		}
	

		if (depth >= first_trisoup_depth)
	

	[bookmark: _Hlk84239196]		trisoup_applied_flag
	ae(v)

				if (trisoup_applied_flag)
	

					return
	

	
	

		if(geometry_planar_enabled_flag)
	

			for(k = 0; k < 3; k++)
	

				if(PlanarEligible[k]) {
	

					is_planar_flag[k]
	ae(v)

					if(is_planar_flag[k])
	

						plane_position[k]
	ae(v)

				}
	

		if(DirectModeFlagPresent)
	

			direct_mode_flag
	ae(v)

		if(direct_mode_flag)
	

			geometry_direct_mode_data()
	

		else {
	

			if(OccupancyIdxMaybePresent)
	

				single_child_flag
	ae(v)

			if(single_child_flag)
	

				for(k = 0; k < 3; k++)
	

					if(! isPlanar[k])
	

						occupancy_idx[k]
	ae(v)

			if(OccupancyMapPresent)
	

				if(bitwise_occupancy_flag)
	

					occupancy_map
	ae(v)

				else
	

					occupancy_byte
	de(v)

			if(LeafNode && duplicate_points_enabled_flag)
	

				for(child = 0; child < NumChildren; child++) {
	

	[Ed: there are two instances of dup_point_cnt_gt0_flag, they are the same flag, but signalled in different places...]
				dup_point_cnt_gt0_flag[child]
	ae(v)

					if(dup_point_cnt_gt0_flag[child])
	

						dup_point_cnt_minus1[child]
	ae(v)

				}
	

		}
	

	}
	

[bookmark: _Ref76986505]Table 4 The proposed syntax changes on Geometry trisoup data syntax.
	geometry_trisoup_data() {
	Descriptor

		if(trisoup_multilevel_enabled_flag)
	

			trisoup_depth = log2_trisoup_max_node_size_minus2 - log2_trisoup_min_node_size_minus2 +1
	

		else
	

			trisoup_depth = 1
	

	
	

		for (lvl = 0; lvl < trisoup_depth; lvl++) {
	

			if (unique_segments_exist_flag[i]) {
	

				for(i = 0; i <= num_unique_segments_minus1; i++)
	

	[bookmark: _Hlk84239262]				segment_indicator[lvl][i]
	ae(v)

				for(i = 0; i < NumTrisoupVertices; i++)
	

					vertex_position[lvl][i]
	u(v)

			}
	

		}
	

	}
	

Encoding process
At encoder side, Trisoup node size for each node is determined as follows. Figure 1 shows an example maxTrisoupnodesize corresponds to depth 2 and maxTrisoupnodesize corresponds to depth 4.
1) Points are reconstructed for each depth as same as the single-level Trisoup. In Figure 1, points are reconstructed for depth 2 through 4, respectively.
2) Costs are compaired between a parent node and a child nodes. In this contribution, various cost functions are tested as described in Sec. 4.
Then, a node that has smaller cost is determined as Trisoup node tentatively. The comparing opperations are done recursively from the largest depth to the smallest depth. In Figure 1, firstly costs for depth 4 and depth 3 are compaired, then costs for depth 3 and depth 2 are compaired.
[image:]
[bookmark: _Ref76987406]Figure 1 An example of Trisoup node size determination.

[bookmark: _Ref84237375]Cost function for node size decision studied in [4]
In [4], the following three kinds of cost function are studied. In experiments, some combinations of cost functions are tested described in Sec. 5.
· D1 metric
D1 metric is calculated symmetrically as the same as dmetric software.
· D2 metric
D2 metric is calculated asymmetrically by just using normal information of input point cloud, as the same as [3].
· Bits amount of side information (R)
Actually, side information for Trisoup are encoded by arithmetic coding. However, actuall bits amount can not be estimated at the moment of node size decision process due to the current software implementation. Therefore, bits amout of side information are roughly estimated by considering that all side information are coded by fixed length coding as follows.

Here, is a bit for encoding trisoup_applied_flag, is bits for encoding segment_indicator, is bits for encoding vertex_position, and is the number of vertices on this node.

Here, is bits for encoding occupancy code, and is bits amount of each child node retaiend from previous depth (which is lager depth than the current depth because of bottom-up decision).

After each judgement like in Figure 1, bits amount of side information (R) is retained for next depth. When parent node size are selected, is retained. On the other hand, when chidren nodes are retained, is retained.

[bookmark: _Ref84237932]Experimental results
In this contribution, it is reported that test results in [4] with new categories proposed in [5]. The new categories are just reordered test sequences from the old categories. Therefore, experimental result for each sequence reported in this contribution is completely same as the result reported in [4]. The following experimental results are just reordered from the results in [4].

We implemented the proposed method on top of TMC13-v14.0. Node size settings for each test are shown in Table 5. Node sizes for anchor is defined by CTC, and node size 2 (for r04) is the minimum node size for Trisoup in principle. In test, node size can be selected the same size of CTC or CTC + 1 size.
Table 6 shows cost function for each test. In Test 1, only D1 metric is used. In test 2, D2 metric is additionally used. In Test 2.1, D2 MSE is just added to D1 MSE. On the other hand, 4 * D2 MSE is added to D1 MSE, because D1 MSE is roughly four times larger than D2 MSE on Anchor (CTC) results. In Test 3, is additionally used on the cost function of Test 2.2. is a Lagrange multiplier and set heuristically as {372.0, 26.0, 1.8, 0.12} for {r01, r02, r03, r04}.
Here, Node size settings shown in Table 5 and cost functions shown in Table 6 are completely same as the those in [4].

From Table 7 to Table 10, experimental results for Test 1, Test 2.1, Test 2.2, and Test 3 are shown, respectively. Additionally, D1/D2 BD-rate for each test is summarized in Table 6. It can be seen that D2 BD-rates are improved by using D2 metric in Test 2.1 and 2.2 with negligible impact to D1 BD-rates. It can be found that D1 and D2 BD-rate are significantly improved by considering in Test 3.
Additionally, it can be shown in Table 7 to Table 10 that larger coding gain by variable node size are observed in sparser categories.

[bookmark: _Ref76992775][bookmark: _Ref92715725]Table 5 Node size settings.
	Method
	Node size log2

	
	r01
	r02
	r03
	r04

	Anchor (CTC)
	5
	4
	3
	2

	Test (node size = CTC & CTC+1)
	6, 5
	5, 4
	4, 3
	3, 2

[bookmark: _Ref84246156]Table 6 Cost function and BD-rates for each test.
	Test
	Cost function
	D1 BD-rate
	D2 BD-rate

	1
	
	-1.7%
	7.1%

	2.1
	
	-1.8%
	4.9%

	2.2
	
	-1.5%
	2.5%

	3
	
	-7.5%
	0.7%

[bookmark: _Ref76993437]Table 7 Experimental results for Test 1 with new categories.
	C2_ai
	lossy geometry, lossy attributes [all intra]

	
	End-to-End BDAttrRate [%]
	Geom. BDTotGeomRate [%]

	
	Luma
	Chroma Cb
	Chroma Cr
	Reflectance
	D1
	D2

	Solid average
	0.8%
	1.0%
	0.7%
	
	0.0%
	3.1%

	Dense average
	-0.3%
	0.6%
	0.3%
	
	-1.2%
	4.6%

	Sparse average
	-0.3%
	-0.6%
	0.4%
	
	-2.1%
	12.2%

	Scant average
	-0.3%
	-0.1%
	0.7%
	
	-2.9%
	8.2%

	Am-fused average
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!

	Am-frame average
	
	
	
	#DIV/0!
	#DIV/0!
	#DIV/0!

	Overall average
	-0.1%
	0.2%
	0.5%
	#DIV/0!
	-1.7%
	7.1%

	Avg. Enc Time [%]
	196%

	Avg. Dec Time [%]
	103%

Table 8 Experimental results for Test 2.1 with new categories (supplemental).
	C2_ai
	lossy geometry, lossy attributes [all intra]

	
	End-to-End BDAttrRate [%]
	Geom. BDTotGeomRate [%]

	
	Luma
	Chroma Cb
	Chroma Cr
	Reflectance
	D1
	D2

	Solid average
	0.6%
	0.8%
	0.6%
	
	-0.1%
	1.9%

	Dense average
	-0.4%
	0.6%
	0.3%
	
	-1.4%
	3.3%

	Sparse average
	-0.7%
	-1.0%
	-0.1%
	
	-2.0%
	9.0%

	Scant average
	-0.6%
	-0.5%
	0.2%
	
	-3.0%
	5.5%

	Am-fused average
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!

	Am-frame average
	
	
	
	#DIV/0!
	#DIV/0!
	#DIV/0!

	Overall average
	-0.3%
	0.0%
	0.3%
	#DIV/0!
	-1.8%
	4.9%

	Avg. Enc Time [%]
	196%

	Avg. Dec Time [%]
	102%

Table 9 Experimental results for Test 2.2 with new categories (supplemental).
	C2_ai
	lossy geometry, lossy attributes [all intra]

	
	End-to-End BDAttrRate [%]
	Geom. BDTotGeomRate [%]

	
	Luma
	Chroma Cb
	Chroma Cr
	Reflectance
	D1
	D2

	Solid average
	0.6%
	1.0%
	0.8%
	
	0.1%
	1.0%

	Dense average
	-0.4%
	0.4%
	0.2%
	
	-1.4%
	2.2%

	Sparse average
	-1.1%
	-1.7%
	-0.7%
	
	-1.6%
	4.7%

	Scant average
	-0.8%
	-1.1%
	-0.2%
	
	-2.6%
	2.4%

	Am-fused average
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!

	Am-frame average
	
	
	
	#DIV/0!
	#DIV/0!
	#DIV/0!

	Overall average
	-0.5%
	-0.4%
	0.0%
	#DIV/0!
	-1.5%
	2.5%

	Avg. Enc Time [%]
	196%

	Avg. Dec Time [%]
	101%

[bookmark: _Ref84262741]Table 10 Experimental results for Test 3 with new categories.
	C2_ai
	lossy geometry, lossy attributes [all intra]

	
	End-to-End BDAttrRate [%]
	Geom. BDTotGeomRate [%]

	
	Luma
	Chroma Cb
	Chroma Cr
	Reflectance
	D1
	D2

	Solid average
	1.6%
	0.9%
	0.8%
	
	-0.3%
	2.7%

	Dense average
	0.3%
	0.4%
	0.3%
	
	-7.6%
	0.7%

	Sparse average
	0.3%
	-1.4%
	-0.8%
	
	-8.4%
	1.5%

	Scant average
	0.3%
	-1.0%
	-0.4%
	
	-11.0%
	-0.9%

	Am-fused average
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!

	Am-frame average
	
	
	
	#DIV/0!
	#DIV/0!
	#DIV/0!

	Overall average
	0.6%
	-0.3%
	-0.1%
	#DIV/0!
	-7.5%
	0.7%

	Avg. Enc Time [%]
	195%

	Avg. Dec Time [%]
	97%

Conclusion
In this contribution, it was reported that the result of EE 13.50 on Triangle soup.
This work was supported by Ministry of Internal Affairs and Communications (MIC) of Japan (Grant no. JPJ000595).
References
[1] [bookmark: _Ref83911414][bookmark: _Ref69290429][bookmark: _Ref43296492]K. Unno, K. Kawamura, “[G-PCC][New] Extension of Trisoup to variable node size“, ISO/IEC JTC1/SC29/WG7 m57368, Online, July 2021.
[2] [bookmark: _Ref83911322]“G-PCC Future Enhancements“, ISO/IEC JTC1/SC29/WG11 N19522, Online, June 2020.
[3] [bookmark: _Ref69293800]A. Dricot, J. Ascenso, “Adaptive Multi-Level Triangle Soup for Geometry-based Point Cloud Coding,“ 2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP), September 2019.
[4] [bookmark: _Ref92715042]K. Unno, K. Kawamura, “[G-PCC][EE 13.50] Report on Triangle soup“, ISO/IEC JTC1/SC29/WG7 m58005, Online, October 2021.
[5] [bookmark: _Ref92715450]D. Flynn, K. Mammou, “G-PCC: Updating common test conditions“, ISO/IEC JTC1/SC29/WG7 m57468, Online, July 2021.
image1.png

