INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 7
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC 1/SC 29/WG 7 m58775
Online – January 2022

Title: [G-PCC][EE13.50 related][New Proposal] Refinement of Trisoup projection plane determination for improving subjective quality
Author: Kyohei Unno, Kei Kawamura (KDDI)
Abstract
In this contribution, it is proposed that refined projection plane determination process on Trisoup to improve subjective quality of reconstructed point cloud.
Introduction
In the previous meeting held on Oct. 2022, some examples of reconstructed point cloud by the current implementation of Trisoup were reported in the EE13.50 report [1]. It is pointed out that some visual “holes“ on reconstructed point cloud were observed. To solve this problem, firstly we investigated cause of this problem, and found that the cause of the problem is on projection plane determination which is a part of Trsoup decoding process. Therefore, in this contribution, we propose that refined projection plane determination process.
Analysis of the problem
As shown in Figure 1 some visual “holes“ are obseved on reconstructed point cloud generated by the current implementation of Trisoup (TMC13-v14.0). To investigate the cause of this problem, we tried to visualize triangle meshes generated in Trisoup decoding process as shown in Figure 2 and Figure 3. From visualized triangle meshes shown in Figure 3, some “Malill-formed nodes“ are observed on “holes“ observed area in Figure 1. Then, we investigated the cause of “Malill-formed nodes“, and it was found that the current projection plane determination process sometimes does not work as expected. Figure 4 shows key idea of the current projection plane determination process. The current implementation calculates the difference between max coordinate value and min coordinate value accroding to each axis, then projection plane is determined by ignoring an axis which has the smallest diffenrence. In other words, the projection plane is defined by axes which have larger difference. Here, two ore more axes have the minimum difference value, projection plane is determined by ignoring an axis according to predifned priolity as x -> y -> z. The current implementation does not work well in the case that two ore more axes have the minimum difference. Figure 5 shows an example case that the current implementation does not work. In the case of Figure 5, differences between the max coordinate value and the min coordinate value for x, y, and z axis are completely same (=N). In this case, projection plane is determined as ignoring x axis (i.e. y-z plane). However, in the case of Figure 5, x-y plane or x-z plane is better than y-z plane as projection plane. As written in above, the current implementation sometimes chooses unsuitable projection plane and it is the cause of illMal-formed node and holes.

As shown in the Figure 5, the problem of the current implementation is that it evaluates only 1-dimentional spread of the vertices. However, desirable behavior of the process is that the process evaluates 2-dimantinal spread of the vertices.
[image:]
[bookmark: _Ref92721175]Figure 1 An example of reconstructed point cloud by TMC13-v14.0.

[image:]
[bookmark: _Ref92721223]Figure 2 Generated meshes in decoding process of point cloud shown in Fig.1.
 [image:]
[bookmark: _Ref92721228]Figure 3 Zoomed meshes shown in Fig.2.

[image:]
[bookmark: _Ref92427553]Figure 4 The current projection plane determination process.

[image:]
[bookmark: _Ref92722533]Figure 5 An example case that the current projection plane determination does not work well.

Proposed solution
We propose that projection plane is determined by evaluating 2-dimentional spread of vertices of each projection plane. We propose the following two method.

Method 1
Method 1 chooses a projection plane which has the largest area of polygon defined by projected vertices. The area can be calculated sum of small triangles as shown in Figure 6.

[image:][image:]
[bookmark: _Ref92428070]Figure 6 Method 1.

Method 2
Method 2 is a simplification of Method 1. An area of projected polygon can be estimated by length of diagonal lines of the projected polygon. In method 2, each vertex position on projected plane is transformed by Hadamard transform. When a projecte plane is x-y axis, transform operation is as follows.

After Hadamard transform for all vertices in a projected plane, difference between the max coordinate value and the min coordinate value is caluculated according to Hadamard transformed axes. Finally, a plane which has the largest sum of differences is chosen as the projected plane. In the case of Figure 7, sum of differences of x-y plane (amax + bmax) is larger than that of y-z plane (a’max + b’max). Therefore, x-y plane will be chosen as a projection plane in the case of Figure 7.
[image:][image:]
[bookmark: _Ref92724611]Figure 7 Method 2

Complexity analysis
Worst case complexities for a node (with 12 vertices) are estimated as follows, respectively.

Current implementation
[bookmark: _Hlk93360734]Worst case complexity of the current implementation is as follows.

Table 1 Worst case complexity of the current implementation.
	
	ADD
	MUL
	DIV
	SHIFT
	COMP

	STEP 1
	3
	0
	0
	0
	66

	STEP 2
	0
	0
	0
	0
	2

	TOTAL
	3
	0
	0
	0
	68

· Step 1: Calculate diff. between max and min value.
· Step 2: Select plane.

 // STEP 1
 // Determine dominant axis
 Vec3<int32_t> minPos = leafVertices[0].pos;
 Vec3<int32_t> maxPos = leafVertices[0].pos;
 for (int j = 1; j < leafVertices.size(); j++) {
 for (int k = 0; k < 3; k++) {
 if (leafVertices[j].pos[k] > maxPos[k]) {
 maxPos[k] = leafVertices[j].pos[k];
 } else if (leafVertices[j].pos[k] < minPos[k]) {
 minPos[k] = leafVertices[j].pos[k];
 }
 }
 }
 Vec3<int32_t> diffMaxMin = maxPos - minPos;

 // STEP 2
 int32_t minDiff = diffMaxMin[0];
 int32_t dominantAxis = 0;
 for (int k = 1; k < 3; k++) {
 if (diffMaxMin[k] < minDiff) {
 minDiff = diffMaxMin[k];
 dominantAxis = k;
 }
 }

Method 1
Worst case complexity of the Method 1 is as follows. Here, 1 sort process already exists on anothoer part of Trisoup decoding process. Therefore, additional 2 sort processes are counted in Table 2. Additionally, computational cost of sort process is estimated as merge sort, which has less computation among various sort processes.

[bookmark: _Ref93360763][bookmark: _Ref93360758]Table 2 Worst case complexity of the Method 1.
	
	ADD
	MUL
	DIV
	SHIFT
	COMP

	STEP 1
	24
	24
	0
	0
	138

	STEP 2
	123
	60
	0
	0
	0

	STEP 3
	0
	0
	0
	0
	2

	TOTAL
	147
	84
	0
	0
	140

· Step 1: Additional 2 sort processes.
· Step 2: Calculate area for each plane.
· Step 3: Select plane.

 // STEP 1
 for (int j = 0; j < leafVertices.size(); j++) {
 Vec3<int32_t> s = leafVertices[j].pos - blockCenter;
 // dominant axis is X so project into YZ plane
 leafVertices_tmp[0].push_back(leafVertices[j]);
 leafVertices_tmp[0][j].theta = trisoupVertexArc(s[2], s[1], halfWidth);
 leafVertices_tmp[0][j].tiebreaker = s[0];

 // dominant axis is Y so project into XZ plane
 leafVertices_tmp[1].push_back(leafVertices[j]);
 leafVertices_tmp[1][j].theta = trisoupVertexArc(s[2], s[0], halfWidth);
 leafVertices_tmp[1][j].tiebreaker = s[1];

 // dominant axis is Z so project into XY plane
 leafVertices_tmp[2].push_back(leafVertices[j]);
 leafVertices_tmp[2][j].theta = trisoupVertexArc(s[1], s[0], halfWidth);
 leafVertices_tmp[2][j].tiebreaker = s[2];
 }
 int32_t max_area = 0;
 const int a[3] = {1, 0, 0};
 const int b[3] = {2, 2, 1};
 for (int k = 0; k < 3; k++) {
 std::sort(leafVertices_tmp[k].begin(), leafVertices_tmp[k].end(), vertex);

 // STEP 2
 int64_t area = 0;
 std::vector<Vec3<int64_t>> ver_vec(leafVertices_tmp[k].size() - 1);
 for (int j = 1; j < leafVertices_tmp[k].size(); j++){
 Vec3<int64_t> ver_vec0n = {(int64_t)(leafVertices_tmp[k][j].pos[a[k]]
 - leafVertices_tmp[k][0].pos[a[k]]),
 (int64_t)(leafVertices_tmp[k][j].pos[b[k]]
 - leafVertices_tmp[k][0].pos[b[k]]),
 0};
 ver_vec.push_back(ver_vec0n);
 }
 for (int j = 1; j < ver_vec.size(); j++){
 int64_t cross_product;
 cross_product = ver_vec[j-1][0] * ver_vec[j][1] - ver_vec[j-1][1] * ver_vec[j][0];
 area += cross_product;
 }

 // STEP 3
 if (area > max_area) {
 dominantAxis = k;
 max_area = area;
 }
 }

Method 2
Worst case complexity of the Method 2 is as follows.

Table 3 Worst case complexity of the Method 2.
	
	ADD
	MUL
	DIV
	SHIFT
	COMP

	STEP 1
	72
	0
	0
	0
	0

	STEP 2
	9
	0
	0
	0
	132

	STEP 3
	0
	0
	0
	0
	2

	TOTAL
	81
	0
	0
	0
	134

· Step 1: Apply Hadamard transform.
· Step 2: Calculate 𝑫=(𝒂𝒎𝒂𝒙−𝒂𝒎𝒊𝒏)+(𝒃𝒎𝒂𝒙−𝒃𝒎𝒊𝒏).
· Step 3: Select plane.

 // STEP 1
 for (int k = 0; k < 3; k++) {
 std::vector<int32_t> Min(2);
 std::vector<int32_t> Max(2);
 Min[0] = INT32_MAX;
 Max[0] = -INT32_MAX;
 Min[1] = INT32_MAX;
 Max[1] = -INT32_MAX;
 for (int j = 0; j < leafVertices.size(); j++){
 std::vector<int32_t> hadamard(2);
 hadamard[0] = leafVertices[j].pos[a[k]] + leafVertices[j].pos[b[k]];
 hadamard[1] = leafVertices[j].pos[a[k]] - leafVertices[j].pos[b[k]];
 if (hadamard[0] < Min[0])
 Min[0] = hadamard[0];
 if (hadamard[0] > Max[0])
 Max[0] = hadamard[0];
 if (hadamard[1] < Min[1])
 Min[1] = hadamard[1];
 if (hadamard[1] > Max[1])
 Max[1] = hadamard[1];
 }

 // STEP 2
 int32_t area = (Max[0] - Min[0]) + (Max[1] - Min[1]);

 // STEP 3
 if (area > maxArea){
 maxArea = area;
 dominantAxis = k;
 }
 }

[bookmark: _Hlk92726135]Experimental results
Objective evaluation
We implemented the proposed method on top of TMC13-v14.0. Table 1 shows the experimental result of method 1, and Table 2 shows the experimental result of method 2, respectively.

[bookmark: _Ref92726080]Table Experimental result of method 1.
	C2_ai
	lossy geometry, lossy attributes [all intra]

	
	End-to-End BDAttrRate [%]
	Geom. BDTotGeomRate [%]

	
	Luma
	Chroma Cb
	Chroma Cr
	Reflectance
	D1
	D2

	Solid average
	0.1%
	0.3%
	0.1%
	
	0.1%
	-0.1%

	Dense average
	-0.4%
	0.0%
	-0.2%
	
	0.0%
	0.0%

	Sparse average
	-0.2%
	-0.5%
	0.1%
	
	-0.3%
	-0.5%

	Scant average
	-0.3%
	-0.5%
	-0.3%
	
	-0.1%
	0.1%

	Am-fused average
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!

	Am-frame average
	
	
	
	#DIV/0!
	#DIV/0!
	#DIV/0!

	Overall average
	-0.2%
	-0.2%
	-0.1%
	#DIV/0!
	-0.1%
	-0.1%

	Avg. Enc Time [%]
	99%

	Avg. Dec Time [%]
	100%

[bookmark: _Ref92726096]Table Experimental result of method 2.
	C2_ai
	lossy geometry, lossy attributes [all intra]

	
	End-to-End BDAttrRate [%]
	Geom. BDTotGeomRate [%]

	
	Luma
	Chroma Cb
	Chroma Cr
	Reflectance
	D1
	D2

	Solid average
	0.0%
	0.3%
	0.2%
	
	0.1%
	0.0%

	Dense average
	-0.4%
	0.0%
	-0.2%
	
	0.0%
	0.0%

	Sparse average
	-0.2%
	-0.3%
	0.3%
	
	-0.4%
	-0.5%

	Scant average
	-0.3%
	-0.4%
	-0.2%
	
	-0.2%
	0.1%

	Am-fused average
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!
	#DIV/0!

	Am-frame average
	
	
	
	#DIV/0!
	#DIV/0!
	#DIV/0!

	Overall average
	-0.2%
	-0.2%
	0.0%
	#DIV/0!
	-0.1%
	-0.1%

	Avg. Enc Time [%]
	100%

	Avg. Dec Time [%]
	100%

Subjective evaluation
From Figure 8 to Figure 10 are reconstructed point cloud and meshes by method 2, and from Figure 11 to Figure 13 are reconstructed point cloud and meshes by method 2, respectively. It can be shown that “holes“ are disaapeared.
[image:]
[bookmark: _Ref92725301]Figure 8 Reconstructe point cloud by method 1.

[image:]
Figure 9 Meshes generated by method 1.

[image:]
[bookmark: _Ref92725307]Figure 10 Zoomed meshes generated by method 1.
[image:]
[bookmark: _Ref92725340]Figure 11 Reconstructe point cloud by method 2.

[image:]
Figure 12 Meshes generated by method 2.

[image:]
[bookmark: _Ref92725346]Figure 13 Zoomed meshes generated by method 2.

Conclusion
In this contribution, it was proposed that refined projection plane determination process on Trisoup to improve subjective quality of reconstructed point cloud.
This work was supported by Ministry of Internal Affairs and Communications (MIC) of Japan (Grant no. JPJ000595).
References
[1] [bookmark: _Ref92715042]K. Unno, K. Kawamura, “[G-PCC][EE 13.50] Report on Triangle soup“, ISO/IEC JTC1/SC29/WG7 m58005, Online, October 2021.
image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image1.png

image2.png

