INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 7
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC 1/SC 29/WG 7 m 60159
Online – July 2022

Title: [G-PCC][EE13.50 Test 2] Trisoup Variable Node Size Extension
Author: Kyohei Unno, Satoshi Komorita, Kei Kawamura (KDDI)
Abstract
In this contribution, it is reported that the result of EE 13.50 Test 2 on Trisoup variable node size extension. The proposed method is implemented on top of Trisoup improvement that is tested as EE 13.50 Test 1. Experimental results show that the proposed method brings coding losses of 3.1% and 6.5% for D1/D2 BD-rates, contrasting with the case when TMC13-v14 is used as the anchor.
Introduction
Currently, Trisoup is studied as one of the new tools for the G-PCC 2nd edition. Both in the current TMC13 implementation of Trisoup and its improvements, Trisoup node size can be defined as only one size for each slice. In other words, the current implementation and its improvements only support fixed node size Trisoup. In terms of coding efficiency, an extension of Trisoup to variable node size could be improved coding efficiency by selecting node sizes according to the structure of an input point cloud.
According to such a background, variable node size extension was proposed in [1][2]. In this contribution, it is reported that coding performances of the proposed method in [1][2] on top of the Trisoup improvements [3][4][5][6][7][8].
[bookmark: _Ref108440928]The proposed method in m58776 and m57368
Details of proposed decoding processes are as follows.

1. maxTrisoupNodesize and minTrisoupNodesize are decoded from GDUH instead of trisoupNodesize, which is used for fixed node size Trisoup. Then, information of unique segments is also decoded from GDUH.
1. Occupancy and trisoup_applied_flag are decoded for each node in each depth, as shown in Figure 1.
1. When the current node size is larger than the maxTrisoupNodesize, occupancy maps are decoded by the conventional Octree decoding process.
1. Otherwise, when the current node size is equal to or smaller than the maxTrisoupNodesize, and the current node size is larger than the minTrisoupNodesize, trisoup_applied_flag is firstly decoded for each node. When trisoup_applied_flag is true, the current node is marked as a Trisoup node of the current depth, and then the Octree process is terminated for the current node. Otherwise (trisoup_applied_flag is false), an occupancy map is decoded, and the current node is split by Octree.
1. Otherwise, when the current node size is equal to the minTrisoupNodesize, all remaining nodes are marked as Trisoup nodes (same as fixed node size Trisoup).
1. When a node size is larger than the minTrisoupNodesize, vertex positions are interpolated as proposed in [1]. Then, points are reconstructed as the fixed node size Trisoup case.

[image:]
[bookmark: _Ref103888369]Figure 1 Proposed variable node size extension of Trisoup.

In [2], the following three kinds of the cost function are studied. In this report, some combinations of cost functions are tested as described in Sec. 4.
· D1 metric
D1 metric is calculated symmetrically as the same as the dmetric software.
· D2 metric
D2 metric is calculated asymmetrically by just using normal information of input point cloud.
· Bits amount of side information (R)
Actually, side information for Trisoup is encoded by arithmetic coding. However, the actual bits amount can not be estimated at the moment of the node size decision process due to the current software implementation. Therefore, bits amount of side information is roughly estimated by considering that all side information is coded by fixed-length coding as follows.

Here, is a bit for encoding trisoup_applied_flag, is bits for encoding segment_indicator, is bits for encoding vertex_position, and is the number of vertices on this node.

Here, is bits for encoding occupancy code, and is bits amount of each child node retained from the previous depth (which is a larger depth than the current depth because of the bottom-up decision).

After each judgment, a bit amount of side information (R) is retained for the next depth. When parent node sizes are selected, is retained. On the other hand, when children nodes are retained, is retained.

[bookmark: _Ref84237932]Experimental Results
Test settings
In this test, the coding performance of the proposed method on top of Trisoup improvements by Xiaomi [9][10] is tested.
Initially, two methods are defined as anchors in this test [11]. One is the Trisoup improvements by Xiaomi [9][10], and the other is the latest test model (which could be TMC13v18). However, the latest test model has not yet been released. The current latest version of TMC13 is v14 [12], and coding performances of the proposed method on top of TMC13v14 have already been reported in [1][2]. Therefore, we only test the proposed method on top of the Trisoup improvements that are tested as Test 1 in EE13.50 [9].

Tests are performed basically under the G-PCC test conditions specified in CTC [13]. Condition C2 (lossy geometry, lossy attributes) with variants from r01 to r04 are tested. Tests are conducted using static contents from CTC categories Solid, Dense, Sparse, and Scant [13].

Node size settings for each test are shown in Table 1. Node sizes for the anchor is defined by CTC, and node size 2 (for r04) is the minimum node size for Trisoup in principle. In this test, node size can be selected between the same size of CTC and CTC + 1 size.

[bookmark: _Ref76992775][bookmark: _Ref92715725]Table 1 Node size settings.
	Method
	Node size log2

	
	r01
	r02
	r03
	r04

	Anchor (CTC)
	5
	4
	3
	2

	Test (node size = CTC & CTC+1)
	6, 5
	5, 4
	4, 3
	3, 2

Test results
Table 2 shows the summary of experimental results. In this report, two settings of the cost function are tested. In Test 3, is additionally used on the cost function of Test 2.2. is a Lagrange multiplier and set the same value as in [1][2] ({372.0, 26.0, 1.8, 0.12} for {r01, r02, r03, r04}). Here, the names of Tests are consistent with tests based on TMC13-v14 reported in [2]. As shown in the table, there are two opposite behaviors between two anchors, such as Trisoup improvements and TMC13-v14.
The first difference is the coding efficiency of the proposed method. When the Trisoup improvement is used as the anchor and the baseline method, the proposed method brings coding losses in contrast with the case when TMC13-v14 is used as the anchor and baseline method. This may come from improvements in segment and vertex coding in the Trisoup improvement [7]. The improved method uses spatial correlation to realize efficient coding. However, node distribution would become sparse by the proposed method because segment and vertex are coded/decoded independently for each node size. Therefore, harmonizations are needed to obtain coding gains by variable node size extension with the Trisoup improvements.
The second difference is related to the cost functions to determine node sizes. When the Trisoup improvement is used as an anchor and the baseline method, additional use of brings coding losses in contrast with the TMC13-v14 case. There may be two reasons. One is the rough estimation of . As explained in 3., currently, is estimated as fixed-length coding. Previously (TMC13-v14 case), such a rough estimation worked well because segments were coded by very simple arithmetic coding, and vertices were coded by fixed-length coding. However, coding schemes of segments and vertices are improved by the Trisoup improvement. Therefore, the estimated value of may become much different from the actual bits. The other reason may be values. Values of should be changed to adjust the Trisoup improvement.

[bookmark: _Ref108179444]Table 2 Summary of experimental results.
	Method
	Anchor and Base method
	Cost function
	D1 BD-R
	D2 BD-R

	Test 2.2
	Xiaomi
	
	3.1 %
	6.5 %

	(Ref.) Test 3
	Xiaomi
	
	6.1 %
	13.9 %

	(Ref.) Test 2.2 in [2]
	TMC13-v14
	
	-1.5 %
	2.5 %

	(Ref.) Test 3 in [2]
	TMC13-v14
	
	-7.5 %
	0.7 %

Table 3 Experimental results of Test 2.2 compared with Xiaomi’s.
	C2_ai
	lossy geometry, lossy attributes [all intra]

	
	End-to-End BD‑AttrRate [%]
	Geom. BD‑TotGeomRate [%]

	
	Luma
	Chroma Cb
	Chroma Cr
	Reflectance
	D1
	D2

	Solid average
	0.2%
	-0.1%
	0.1%
	
	3.5%
	4.5%

	Dense average
	-0.3%
	-0.3%
	0.0%
	
	2.8%
	5.7%

	Sparse average
	0.6%
	0.6%
	0.3%
	
	3.2%
	7.7%

	Scant average
	0.2%
	0.0%
	0.0%
	
	3.0%
	7.6%

	Overall average
	0.1%
	0.0%
	0.1%
	#DIV/0!
	3.1%
	6.5%

	Avg. Enc Time [%]
	206%

	Avg. Dec Time [%]
	107%

Table 4 (Reference) Experimental results of Test 3 compared with Xiaomi’s.
	C2_ai
	lossy geometry, lossy attributes [all intra]

	
	End-to-End BD‑AttrRate [%]
	Geom. BD‑TotGeomRate [%]

	
	Luma
	Chroma Cb
	Chroma Cr
	Reflectance
	D1
	D2

	Solid average
	0.2%
	-0.1%
	0.0%
	
	7.3%
	8.6%

	Dense average
	-0.2%
	-0.2%
	0.2%
	
	5.0%
	14.0%

	Sparse average
	0.7%
	0.7%
	0.1%
	
	6.5%
	14.9%

	Scant average
	0.5%
	0.1%
	0.3%
	
	5.9%
	16.2%

	Overall average
	0.3%
	0.1%
	0.2%
	#DIV/0!
	6.1%
	13.9%

	Avg. Enc Time [%]
	208%

	Avg. Dec Time [%]
	109%

Conclusion
In this contribution, it was reported that the result of EE 13.50 Test 2 on Trisoup variable node size extension. The proposed method was implemented on top of Trisoup improvement that was tested as EE 13.50 Test 1. Experimental results showed that the proposed method brings coding losses of 3.1% and 6.5% for D1/D2 BD-rates in contrast with the case when TMC13-v14 is used as the anchor. It was recommended that the study of variable node size extension is stopped once. Then the study should be continued outside EE, and it will be proposed as a new proposal in a future meeting.
This work was supported by Ministry of Internal Affairs and Communications (MIC) of Japan (Grant no. JPJ000595).
References
[1] [bookmark: _Ref102075224][bookmark: _Ref95468322][bookmark: _Ref83911414][bookmark: _Ref69290429][bookmark: _Ref43296492]K. Unno, K. Kawamura, “[G-PCC][EE13.50 related][New Proposal] Refinement of Trisoup variable node size extension for improving subjective quality“, ISO/IEC JTC1/SC29/WG7 m58776, Online, January 2022.
[2] [bookmark: _Ref108181764][bookmark: _Hlk108181947]K. Unno, K. Kawamura, “[G-PCC][New] Extension of Trisoup to variable node size“, ISO/IEC JTC1/SC29/WG7 m57368, Online, July 2021.K. Unno, K. Kawamura, “ [G-PCC][EE13.50 related][New Proposal] Refinement of Trisoup variable node size extension for improving subjective quality“, ISO/IEC JTC1/SC29/WG7 m58776, Online, January 2022.
[3] [bookmark: _Ref102075191]S. Lasserre, “[GPCC][TriSoup] Part 2 Fixes and simplifications“, ISO/IEC JTC1/SC29/WG7 m59289, Online, April 2022.
[4] [bookmark: _Ref102075196]S. Lasserre, “[GPCC][TriSoup] Part 3 Adding a residual for the centroid vertex“, ISO/IEC JTC1/SC29/WG7 m59290, Online, April 2022.
[5] [bookmark: _Ref102075201]S. Lasserre, “[GPCC][TriSoup] Part 4 Vertex Quantization“, ISO/IEC JTC1/SC29/WG7 m59291, Online, April 2022.
[6] [bookmark: _Ref102075207]S. Lasserre, “[GPCC][TriSoup] Part 5 Improved rendering from triangles“, ISO/IEC JTC1/SC29/WG7 m59292, Online, April 2022.
[7] [bookmark: _Ref102075213]S. Lasserre, “[GPCC][TriSoup] Part 6 Compression of vertex presence flag and vertex position“, ISO/IEC JTC1/SC29/WG7 m59293, Online, April 2022.
[8] [bookmark: _Ref102075219]S. Lasserre, S. Gao, “[GPCC][TriSoup] Part 7 Latest improvements“, ISO/IEC JTC1/SC29/WG7 m59294, Online, April 2022.
[9] [bookmark: _Ref108182070]S. Lasserre, “[GPCC][EE 13.50] Report on improved TriSoup “, ISO/IEC JTC1/SC29/WG7 m59973, Online, July 2022.
[10] [bookmark: _Ref108182112]http://mpegx.int-evry.fr/software/MPEG/PCC/CE/mpeg-pcc-tmc13/-/tree/mpeg138/ee13.50/m59288-m59294_trisoup-improvements+HLS
[11] [bookmark: _Ref84235973][bookmark: _Ref95468362]“Description of Exploration Experiment 13.50 on triangle soup“, ISO/IEC JTC1/SC29/WG7 N0331, Online, April 2022.
[12] [bookmark: _Ref95468522][bookmark: _Ref62536443]“G-PCC Test Model v14“, ISO/IEC JTC1/SC29/WG7 N0094, Online, April 2021.
[13] [bookmark: _Ref62536671]D. Flynn, K. Mammou, “G-PCC: Updating common test conditions“, ISO/IEC JTC1/SC29/WG7 m57468, Online, July 2021.
image1.png
1. Octree splitting is done until
maxTrisoupNodesize.

_____________________ 2. trisoup_applied_flag is
decoded for each node.
Then Trisoup or further Octree

splitting is applied.

depth=4

minTrisoupNodesize

3. Trisoup is applied for all remaining nodes.
Decoding of trisoup_applied_flag is not needed at the last depth.

