INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 7
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC 1/SC 29/WG 7 m61065
Mainz – October 2022

[bookmark: _Ref78299232]Title: [V-DMC][new] Block-Based Context-Adaptive Arithmetic Coding of Displacements
Author: Hitoshi Nishimura, Kei Kawamura, Koki Kishimoto (KDDI)
Abstract
This contribution proposes a block-based context-adaptive arithmetic coding for displacements. It is shown that coding complexity is reduced by the proposed method while savings BD-Rate.
Introduction
In subdivision schemes for dynamic mesh coding [1], vertex displacements of subdivided meshes are first computed and transformed by wavelet transforms. The obtained displacement coefficients have a more compact representation compared to original displacements and thus can be more efficiently compressed. Then, the displacement coefficients are quantized, packed into image sequence, and compressed by a video codec. It is better to compress the displacement coefficients in a lossless manner.
However, the complexity of video coding is higher than other coding methods, such as entropy coding. To solve this problem, some previous documents [2, 3] have proposed to replace the video coding with arithmetic coding to compress the displacement coefficients. The previous method [2] achieved a reduction of coding complexity while savings BD-Rate relative to the reference software [4]. Since the previous method [2] applies the arithmetic coding for every displacement coefficient every time, there is a room for reduction in the complexity.
In this document, we propose a block-based arithmetic coding for the displacement coefficients. In the proposed method, displacement coefficients are divided blocks and subblocks. Globally, the displacement coefficients are divided for each level of details (LOD) for subdivision because their distributions are different depending on LOD. Locally, the displacement coefficients for each LOD are divided into smaller subblocks. We introduce a block/subblock-level flag, which is set as 0 if all displacement coefficients are zero in a block/subblock, otherwise, set as 1. Moreover, for each displacement coefficient, the context model is adaptively separated depending on neighboring subblocks.
Problem Statement
Figure 1 shows an example of displacement coefficients distribution. There are some regions with many consecutive zeros. Since the previous method [2] applies the arithmetic coding for every displacement coefficient every time, the complexity is still high.

[image: ]
Figure 1: Example of displacement coefficients distribution (the normal axis, frame 1,051 in the longdress sequence). The horizontal axis indicates frequency, and the vertical axis indicates coefficient.

Proposed Method
In this section, we describe the displacements encoder and decoder of the proposed method.
Displacements Encoder
Figure 2 shows a block diagram of encoder. First, a wavelet transform is applied to input displacements and a set of wavelet coefficients is generated. Second, the wavelet coefficients are quantized. If the frame type is intra, the displacement coefficients of the current frame are encoded. Otherwise, the displacement coefficient of each vertex of the current frame is predicted by using the coefficient of the corresponding vertex in the previous frame, then only the prediction residuals are encoded.
Syntax elements are then described by using the quantized wavelet coefficients. After that, the syntax elements are binarized and encoded by an arithmetic encoder, and a displacements bitstream is output. A context model for the arithmetic encoder is determined by context selection. After the arithmetic encoding, the context value is updated and it is stored in a context buffer.
[image: ]
Figure 2: Block diagram of encoder.

Displacements Decoder
Block Diagram
Figure 3 shows a block diagram of decoder. First, a displacements bitstream is decoded by an arithmetic decoder and binarized syntax elements are generated. A context model for the arithmetic decoder is determined by context selection. After the arithmetic decoding, the context value is updated and it is stored in a context buffer. The binarized syntax elements are then de-binarized, and syntax elements are generated. The syntax elements are then decoded and coefficient levels are generated.
If the frame type is inter, the coefficient level in the previous frame is added to the coefficient level in the current frame. After that, an inverse quantization and an inverse wavelet transform are applied and displacements are output.
[image: ]
Figure 3: Block diagram of decoder.

Syntax Elements
Figure 4 shows a block and subblock partitioning of the displacement coefficients. xd[i] denotes the i-th displacement coefficient in the d-th axis. i is also expressed as f-th coefficient in the s-th subblock in the b-th block, so xd[i] is expressed as xd[b][s][f]. n denotes a subblock size.

[image: ]
Figure 4: Block and subblock partitioning of the displacement coefficients.

Table 1 shows syntax elements. The syntax elements are defined at four level, whole, block, subblock, and coefficient level. As shown in Figure 3, displacement coefficients has some regions with many consecutive zeros. Therefore, we introduce the block and subblock level syntax, coded_block_flag[d][b] and coded_subblock_flag[d][b][s], respectively. They indicate whether a block and subblock have any nonzero coefficients or not, respectively. 
Since last_sig_coeff and coeff_abs_level_remaining are multivalued, they are binarized before the arithmetic coding. Other syntax elements are not binarized.

[image: ]
Table 1: Syntax elements.

Figure 5 shows an example of syntax description. For the block and subblock which last_sig_coeff belongs to, their coded_block_flag and coded_subblock_flag are not encoded. If coded_block_flag == 0, coded_subblock_flag and the coefficient level syntax elements are not encoded. In the same way, if coded_subblock_flag == 0, the coefficient level syntax elements are not encoded.

[image: ]
Figure 5: Example of syntax description.

Decoding Process
Figure 6 shows a decoding process.
· Whole level: last_sig_coeff is decoded and all coefficients after the last_sig_coeff position are decoded as 0. Move to the coded_block_flag decoding.
· Block level: coded_block_flag is decoded. If coded_block_flag is 0, all coefficients in the block are decoded as 0, and move to the next block if the block is not the last block. Otherwise, move to the coded_subblock_flag decoding.
· Subblock level: coded_subblock_flag is decoded. If coded_subblock_flag is 0, all coefficients in the subblock are decoded as 0, and move to the next subblock if the subblock is the not last subblock. Otherwise, move to the coefficient-level syntax elements decoding.
· Coefficient level: First, sig_coeff_flag is decoded. If sig_coeff_flag is 0, the coefficient is decoded as 0 and move to the next coefficient. Otherwise, abs_level_greater1_flag is decoded. If abs_level_greater1_flag is 0, the coefficient is decoded as 1 and coeff_sign_flag is decoded. Otherwise, abs_level_greater2_flag is decoded. If abs_level_greater2_flag is 0, the coefficient is decoded as 2 and coeff_sign_flag is decoded. Otherwise, coeff_abs_level_remaining is decoded and the coefficient is decoded as (coeff_abs_level_remaining - 3). After decoding coeff_sign_flag, a negative sign is added to the decoded coefficient if coeff_sign_flag is not 0. After that, if the coefficient is the last value in the subblock, move to the next subblock.

[image: ]
Figure 6: Decoding process.

Context-Adaptive Model for Arithmetic Decoder
The context model is defined for each syntax element.
· last_sig_coeff: The context model is separated for each frame type (intra or inter) and each d-th axis.
· coded_block_flag, coded_subblock_flag: The context model is separated for each frame type, each d-th axis, and each b-th block.
· coefficient level syntax elements: The context model is separated for each frame type, each d-th axis, and each b-th block. Moreover, the context model is adaptively separated depending on neighboring subblocks. If coded_subblock_flag[d][b][s+1] = 0, the context model of sig_coeff_flag[d][b][s][f] is determined to 0, otherwise, to 1. The context model of coeff_abs_level_greater1_flag and coeff_abs_level_greater2_flag are determined in the same way.
Benefits
The proposed method can reduce the complexity because a series of zero coefficients bypass the entropy coding. The complexity of encoding and decoding of the displacements can be reduced in the most cases.
Results
We compared the encoding and decoding time of with/without block and subblock partitioning, and the results are shown in Table 2 and 3, respectively. The subblock size n was set as 500. Both encoding and decoding times were reduced in many experimental conditions.

	
	R1
	R2
	R3
	R4
	R5
	Total

	AI
	-1.4%
	-6.9%
	-7.7%
	3.5%
	-5.0%
	-5.4%

	LD
	-6.3%
	-4.0%
	-7.6%
	-7.4%
	-4.6%
	-6.1%


[bookmark: _GoBack]Table 2: Averaged displacement encoding time reduction by the block and subblock partitioning.

	
	R1
	R2
	R3
	R4
	R5
	Total

	AI
	-7.6%4.2%
	0.1%-12.0%
	-14.5%-0.8%
	3.7%-13.9%
	4.2%3.6%
	-5.8%-6.8%

	LD
	3.3%-7.9%
	-3.5%4.0%
	7.7%-1.9%
	-5.1%10.6%
	-7.9%-8.1%
	0.3%1.4%


Table 3: Averaged displacement decoding time reduction by the block and subblock partitioning.

We also evaluated the performance of the block and subblock partitioning. Table 4 shows the overall averaged BD-Rate compared to the reference software [4]. The BD-Rate of the proposed method is almost the same as that of the previous method. The detailed performance can be found in the companion spreadsheet file.

	
	
	D1
	D2
	Luma
	Chroma Cb
	Chroma Cr

	Without partitioning ([2] implementation)
	AI
	-0.7%
	-0.7%
	-1.1%
	-1.2%
	-1.2%

	
	LD
	-0.9%
	-0.9%
	-1.0%
	-1.0%
	-1.0%

	Without partitioning (our implementation)
	AI
	-0.7%
	-0.7%
	-1.1%
	-1.2%
	-1.2%

	
	LD
	-0.9%
	-0.9%
	-1.0%
	-1.0%
	-1.0%

	With partitioning
	AI
	-0.7%
	-0.7%
	-1.2%
	-1.2%
	-1.2%

	
	LD
	-0.9%
	-0.9%
	-1.0%
	-1.0%
	-1.0%


Table 4: Overall averaged BD-Rate of the previous method [2] and the proposed method.
Conclusion
In this document, we proposed a block-based context-adaptive arithmetic coding for displacements. In the experiments, we showed that the proposed method achieved the reduction of coding complexity while savings BD-Rate. We recommend WG 7 to initiate a CE or EE investigation based on this contribution.
This work was supported by Ministry of Internal Affairs and Communications (MIC) of Japan (Grant no. JPJ000595).
References
[1] Khaled Mammou, Jungsun Kim, Alexis Tourapis, Dimitri Podborski, Krasimir Kolarov, “[V-CG] Apple’s Dynamic Mesh Coding CfP Response,” ISO/IEC JTC 1/SC 29/WG 7 m5928, April 2022.
[2] Chao Huang, Xiang Zhang, Xiaozhong Xu, Jun Tian, Shan Liu, “Arithmetic Coding of Displacements for Subdivision-based Mesh Compression,” ISO/IEC JTC 1/SC 29/WG 7 m60300, July 2022.
[3] Vladyslav Zakharchenko, Yue Yu, Haoping Yu, Dong Wang, “[V-DMC] Geometry displacements entropy coding method,” ISO/IEC JTC 1/SC 29/WG 7 m60185, July 2022.
[4] mpeg-vmesh-tm, http://mpegx.int-evry.fr/software/MPEG/dmc/mpeg-vmesh-tm, 2022.
9

image1.png
5000 10000 15000 20000 25000 30000 35000




image2.png
Displac

ements

Wavelet Transform

Quanti

ization

A\ 2

Frame Buffer

Syntax Description

Binarization
Arithmetic Encoder ContextSelection
ContextUpdate Context Buffer
Displacements

Bitstream





image3.png
Displacements
Bitstream

Arithmetic Decoder

ContextSelection

ContextUpdate

ContextBuffer

De-Binarization

Coefficient Level
Decoder

Inter Prediction

Frame Buffer

3

Inverse
Quantization

Inverse Wavelet
Transform

Displacements





image4.png
Displacement coefficients

d d d
in the d-th axis X012 X3

x[4] 5] | xd6] x[7] ! xi[8] xI[9]

Block index b=0 b=1
Subblock index s=0 s=0 s=1 s=2 s=3
coefficientindex f=0 f=1 | f=0 f=1 ! f=0 f=1 ! f=0 f=1 | f=0 f=1

Subblock size
n=2





image5.png
Level Syntax Descriptor Description
Whole level | last_sig_coeff[d] ue(v) The last position of nonzero coefficient.
Block level coded_block_flag[d][b] u(1) Aflag |nd|cat|pg whether a block has any
nonzero coefficients or not.
Subblock coded_subblock_flag[d](b][s] u(1) A flag indicating \A{hfether a subblock has
level any nonzero coefficients or not.
sig_coeff_flag[d][b][s][f] u(1) A flag indicating whether a coefficient is 0
or not.
coeff_abs_level_greaterl_flag u(1) A flag indicating whether an absolute value
[d][b][s][f] of coefficient is greater than 1 or not.
Coefficient coeff_abs_level_greater2_flag u(1) A flag indicating whether an absolute value
level [d][b][s](f] of coefficient is greater than 2 or not.
coeff_sign_flagld][b]is]if] u(1) A flag indicating whether an sign of

coefficient.

coeff_abs_level_remaining

[d][b[s]If]

ue(v)

An absolute value of coefficient.





image6.png
Displacement coefficients
in the d-th axis

coded_block_flag

coded_subblock_flag

sig_coeff_flag
coeff_abs_level_greaterl_flag
coeff_abs_level_greater2_flag

coeff_sign_flag

coeff_abs_level_remaining

Encoding order

+8 2| +1 ; i 0 0 +1 0
last_sig_coeff=(1, 3, 0)
i o0 -

Voo !

1 1 1

1 1 0

1 0 -

0 1 0

5

w
@
@





image7.png
Start

Decode last_sig_coeff

Decode as 0 after the
last_sig_coeff position

Move to the next block

Decode coded_block_flag

0? Decode as 0 in the block

Move to the next subblock

Decode coded_subblock_flag

Yes

Decode as 0 in the subblock

No

Move to the next value

Decode sig_coeff_flag

Yes
0? Decode as 0

No

Decode coeff_abs_level_greater1_flag

Yes
0? Decode as 1

No

Decode coeff_abs_level_greater2_flag

Yes
0? Decode as 2

No

Decode coeff_abs_level_remaining

Decode as coeff_abs_level_remaining

Decode coeff_sign_flag

Yes
0?
No
Add negative sign
Last No
value?
Yes
Last No
subblock?
Yes

End





